{"title":"带加权反应的反应-扩散方程的永恒解","authors":"R. Iagar, Ariel G. S'anchez","doi":"10.3934/dcds.2021160","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We prove existence and uniqueness of <i>eternal solutions</i> in self-similar form growing up in time with exponential rate for the weighted reaction-diffusion equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\partial_tu = \\Delta u^m+|x|^{\\sigma}u^p, $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>posed in <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathbb{R}^N $\\end{document}</tex-math></inline-formula>, with <inline-formula><tex-math id=\"M2\">\\begin{document}$ m>1 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M3\">\\begin{document}$ 0<p<1 $\\end{document}</tex-math></inline-formula> and the critical value for the weight</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ \\sigma = \\frac{2(1-p)}{m-1}. $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>Existence and uniqueness of some specific solution holds true when <inline-formula><tex-math id=\"M4\">\\begin{document}$ m+p\\geq2 $\\end{document}</tex-math></inline-formula>. On the contrary, no eternal solution exists if <inline-formula><tex-math id=\"M5\">\\begin{document}$ m+p<2 $\\end{document}</tex-math></inline-formula>. We also classify exponential self-similar solutions with a different interface behavior when <inline-formula><tex-math id=\"M6\">\\begin{document}$ m+p>2 $\\end{document}</tex-math></inline-formula>. Some transformations to reaction-convection-diffusion equations and traveling wave solutions are also introduced.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Eternal solutions for a reaction-diffusion equation with weighted reaction\",\"authors\":\"R. Iagar, Ariel G. S'anchez\",\"doi\":\"10.3934/dcds.2021160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We prove existence and uniqueness of <i>eternal solutions</i> in self-similar form growing up in time with exponential rate for the weighted reaction-diffusion equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\partial_tu = \\\\Delta u^m+|x|^{\\\\sigma}u^p, $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>posed in <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\mathbb{R}^N $\\\\end{document}</tex-math></inline-formula>, with <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ m>1 $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ 0<p<1 $\\\\end{document}</tex-math></inline-formula> and the critical value for the weight</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE2\\\"> \\\\begin{document}$ \\\\sigma = \\\\frac{2(1-p)}{m-1}. $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>Existence and uniqueness of some specific solution holds true when <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ m+p\\\\geq2 $\\\\end{document}</tex-math></inline-formula>. On the contrary, no eternal solution exists if <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ m+p<2 $\\\\end{document}</tex-math></inline-formula>. We also classify exponential self-similar solutions with a different interface behavior when <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ m+p>2 $\\\\end{document}</tex-math></inline-formula>. Some transformations to reaction-convection-diffusion equations and traveling wave solutions are also introduced.</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2021160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eternal solutions for a reaction-diffusion equation with weighted reaction
We prove existence and uniqueness of eternal solutions in self-similar form growing up in time with exponential rate for the weighted reaction-diffusion equation
posed in \begin{document}$ \mathbb{R}^N $\end{document}, with \begin{document}$ m>1 $\end{document}, \begin{document}$ 0 and the critical value for the weight
Existence and uniqueness of some specific solution holds true when \begin{document}$ m+p\geq2 $\end{document}. On the contrary, no eternal solution exists if \begin{document}$ m+p<2 $\end{document}. We also classify exponential self-similar solutions with a different interface behavior when \begin{document}$ m+p>2 $\end{document}. Some transformations to reaction-convection-diffusion equations and traveling wave solutions are also introduced.