基于脑MRI年龄估计的课程学习

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Alican Asan, Ramazan Terzi, N. Azginoglu
{"title":"基于脑MRI年龄估计的课程学习","authors":"Alican Asan, Ramazan Terzi, N. Azginoglu","doi":"10.2478/acss-2021-0014","DOIUrl":null,"url":null,"abstract":"Abstract Age estimation from brain MRI has proved to be considerably helpful in early diagnosis of diseases such as Alzheimer’s and Parkinson’s. In this study, curriculum learning effect on age estimation models was measured using a brain MRI dataset consisting of normal and anomaly data. Three different strategies were selected and compared using 3D Convolutional Neural Networks as the Deep Learning architecture. The strategies were as follows: (1) model training performed only on normal data, (2) model training performed on the entire dataset, (3) model training performed on normal data first and then further training on the entire dataset as per curriculum learning. The results showed that curriculum learning improved results by 20 % compared to traditional training strategies. These results suggested that in age estimation tasks datasets consisting of anomaly data could also be utilized to improve performance.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"147 11 1","pages":"116 - 121"},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curriculum Learning for Age Estimation from Brain MRI\",\"authors\":\"Alican Asan, Ramazan Terzi, N. Azginoglu\",\"doi\":\"10.2478/acss-2021-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Age estimation from brain MRI has proved to be considerably helpful in early diagnosis of diseases such as Alzheimer’s and Parkinson’s. In this study, curriculum learning effect on age estimation models was measured using a brain MRI dataset consisting of normal and anomaly data. Three different strategies were selected and compared using 3D Convolutional Neural Networks as the Deep Learning architecture. The strategies were as follows: (1) model training performed only on normal data, (2) model training performed on the entire dataset, (3) model training performed on normal data first and then further training on the entire dataset as per curriculum learning. The results showed that curriculum learning improved results by 20 % compared to traditional training strategies. These results suggested that in age estimation tasks datasets consisting of anomaly data could also be utilized to improve performance.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"147 11 1\",\"pages\":\"116 - 121\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2021-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2021-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

脑磁共振成像的年龄估计已被证明对阿尔茨海默病和帕金森病等疾病的早期诊断有很大帮助。在本研究中,使用由正常和异常数据组成的脑MRI数据集来测量课程学习对年龄估计模型的影响。采用三维卷积神经网络作为深度学习架构,选择并比较了三种不同的策略。策略为:(1)只对正常数据进行模型训练;(2)对整个数据集进行模型训练;(3)先对正常数据进行模型训练,然后根据课程学习对整个数据集进行进一步训练。结果表明,与传统的培训策略相比,课程学习的效果提高了20%。这些结果表明,在年龄估计任务中,由异常数据组成的数据集也可以用来提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curriculum Learning for Age Estimation from Brain MRI
Abstract Age estimation from brain MRI has proved to be considerably helpful in early diagnosis of diseases such as Alzheimer’s and Parkinson’s. In this study, curriculum learning effect on age estimation models was measured using a brain MRI dataset consisting of normal and anomaly data. Three different strategies were selected and compared using 3D Convolutional Neural Networks as the Deep Learning architecture. The strategies were as follows: (1) model training performed only on normal data, (2) model training performed on the entire dataset, (3) model training performed on normal data first and then further training on the entire dataset as per curriculum learning. The results showed that curriculum learning improved results by 20 % compared to traditional training strategies. These results suggested that in age estimation tasks datasets consisting of anomaly data could also be utilized to improve performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信