基于轮胎粉和微二氧化硅的红土柔韧性强度性能研究

B. Gordan, A. Adnan
{"title":"基于轮胎粉和微二氧化硅的红土柔韧性强度性能研究","authors":"B. Gordan, A. Adnan","doi":"10.1155/2015/830903","DOIUrl":null,"url":null,"abstract":"In terms of environmental issues and human health, one of the advisable techniques to improve soil behavior is the use of scrap tires for soil structures. According to the literature, Tire-Derived Aggregates (TDA) are one of the valuable materials in different field of Geotechnical that can be used. TDA properties correspond to some important factors such as high level of flexible, lightweight, high permeability and economic material comparing with sand. Strength performance based on increasing flexibility from laterite soil is the main goal of this study. For this purpose, tropical laterite soil was mixed using TDA and micro silica (MS). As a research method, unconfined tests were carried for thirteen samples based on different percentage of the additives. As a result, the significant reduction for elasticity modulus and strength was observed when soil mixed just using TDA. In addition, the rate of strain at the peak of the curve was dramatically increased. The best performance was found using 6% additives when the ratio was 3% MS and 3% TDA. In fact, the effect of MS was more to increase strength. To recommend, the seepage controlling will investigate at next.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"15 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Strength Performance Based on Flexibility from Laterite Soil Using Tire Powder and Micro Silica\",\"authors\":\"B. Gordan, A. Adnan\",\"doi\":\"10.1155/2015/830903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In terms of environmental issues and human health, one of the advisable techniques to improve soil behavior is the use of scrap tires for soil structures. According to the literature, Tire-Derived Aggregates (TDA) are one of the valuable materials in different field of Geotechnical that can be used. TDA properties correspond to some important factors such as high level of flexible, lightweight, high permeability and economic material comparing with sand. Strength performance based on increasing flexibility from laterite soil is the main goal of this study. For this purpose, tropical laterite soil was mixed using TDA and micro silica (MS). As a research method, unconfined tests were carried for thirteen samples based on different percentage of the additives. As a result, the significant reduction for elasticity modulus and strength was observed when soil mixed just using TDA. In addition, the rate of strain at the peak of the curve was dramatically increased. The best performance was found using 6% additives when the ratio was 3% MS and 3% TDA. In fact, the effect of MS was more to increase strength. To recommend, the seepage controlling will investigate at next.\",\"PeriodicalId\":17611,\"journal\":{\"name\":\"Journal: Materials\",\"volume\":\"15 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal: Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/830903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/830903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

从环境问题和人类健康的角度来看,利用废旧轮胎作为土壤结构物是改善土壤性能的可取技术之一。据文献报道,轮胎骨料是岩土工程各个领域中有价值的可应用材料之一。与砂土相比,TDA具有高柔韧性、轻质、高渗透性和经济性等重要特性。基于增加红土柔韧性的强度性能是本研究的主要目标。为此,采用TDA和微二氧化硅(MS)混合热带红土。作为研究方法,对13个样品进行了不同添加剂百分比的无侧限试验。结果表明,仅使用TDA混合时,土的弹性模量和强度均有显著降低。此外,在曲线的峰值应变速率显著增加。当添加物比例为3% MS和3% TDA时,添加物比例为6%,效果最佳。实际上,MS的作用更多的是增加强度。建议,渗流控制将在下一步进行调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strength Performance Based on Flexibility from Laterite Soil Using Tire Powder and Micro Silica
In terms of environmental issues and human health, one of the advisable techniques to improve soil behavior is the use of scrap tires for soil structures. According to the literature, Tire-Derived Aggregates (TDA) are one of the valuable materials in different field of Geotechnical that can be used. TDA properties correspond to some important factors such as high level of flexible, lightweight, high permeability and economic material comparing with sand. Strength performance based on increasing flexibility from laterite soil is the main goal of this study. For this purpose, tropical laterite soil was mixed using TDA and micro silica (MS). As a research method, unconfined tests were carried for thirteen samples based on different percentage of the additives. As a result, the significant reduction for elasticity modulus and strength was observed when soil mixed just using TDA. In addition, the rate of strain at the peak of the curve was dramatically increased. The best performance was found using 6% additives when the ratio was 3% MS and 3% TDA. In fact, the effect of MS was more to increase strength. To recommend, the seepage controlling will investigate at next.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信