在Ca(OH)2悬浮液中鼓泡CO2对天冬氨酸(Asp)形成的影响及稳定性

IF 1.5 4区 材料科学 Q3 CRYSTALLOGRAPHY
Tianwen Zheng, Haihe Yi
{"title":"在Ca(OH)2悬浮液中鼓泡CO2对天冬氨酸(Asp)形成的影响及稳定性","authors":"Tianwen Zheng, Haihe Yi","doi":"10.1002/crat.202100136","DOIUrl":null,"url":null,"abstract":"Vaterite aggregate grooves are successfully obtained by the Ca(OH)2‐CO2 reaction system in the presence of aspartic acid (Asp). Then, the dynamic changes of pH, conductivity, the concentration of Ca2+ and OH– in the suspension during the reaction process are tested. Moreover, the morphologies and polymorphs of the precipitates at different reaction time are studied by the field emission scanning electron microscope (FE‐SEM) and X‐ray Diffraction (XRD). The results show that when Asp is not added in the Ca(OH)2 suspension, the precipitates are calcite, while the carbonization precipitates with Asp are vaterite. Furthermore, in the presence of Asp, the carbonization process in the Ca(OH)2 suspension has a coating‐fragmentation behavior, and vaterite aggregate grooves can be formed after 110 min. In particular, Asp plays an important role in the nucleation, crystallization, and growth of CaCO3, and then a novel formation mechanism of vaterite aggregate grooves is proposed in this paper.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"11 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Formation and Stabilization of Vaterite Aggregate Grooves with Aspartic Acid (Asp) by Bubbling CO2 into a Ca(OH)2 Suspension\",\"authors\":\"Tianwen Zheng, Haihe Yi\",\"doi\":\"10.1002/crat.202100136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vaterite aggregate grooves are successfully obtained by the Ca(OH)2‐CO2 reaction system in the presence of aspartic acid (Asp). Then, the dynamic changes of pH, conductivity, the concentration of Ca2+ and OH– in the suspension during the reaction process are tested. Moreover, the morphologies and polymorphs of the precipitates at different reaction time are studied by the field emission scanning electron microscope (FE‐SEM) and X‐ray Diffraction (XRD). The results show that when Asp is not added in the Ca(OH)2 suspension, the precipitates are calcite, while the carbonization precipitates with Asp are vaterite. Furthermore, in the presence of Asp, the carbonization process in the Ca(OH)2 suspension has a coating‐fragmentation behavior, and vaterite aggregate grooves can be formed after 110 min. In particular, Asp plays an important role in the nucleation, crystallization, and growth of CaCO3, and then a novel formation mechanism of vaterite aggregate grooves is proposed in this paper.\",\"PeriodicalId\":10797,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/crat.202100136\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/crat.202100136","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 2

摘要

在天冬氨酸(Asp)存在下,用Ca(OH)2 - CO2反应体系成功制备了水晶石集料沟槽。然后,测试了反应过程中悬浮液的pH、电导率、Ca2+和OH -浓度的动态变化。利用场发射扫描电镜(FE - SEM)和X射线衍射仪(XRD)研究了不同反应时间下析出相的形貌和多晶态。结果表明:Ca(OH)2悬浮液中不添加Asp时,析出相为方解石,而添加Asp后的碳化析出相为水晶石;此外,在Asp的存在下,Ca(OH)2悬浮液中的碳化过程具有包覆破碎行为,在110 min后形成水晶石集落槽。特别是,Asp在CaCO3的成核、结晶和生长中起着重要作用,因此本文提出了一种新的水晶石集落槽形成机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formation and Stabilization of Vaterite Aggregate Grooves with Aspartic Acid (Asp) by Bubbling CO2 into a Ca(OH)2 Suspension
Vaterite aggregate grooves are successfully obtained by the Ca(OH)2‐CO2 reaction system in the presence of aspartic acid (Asp). Then, the dynamic changes of pH, conductivity, the concentration of Ca2+ and OH– in the suspension during the reaction process are tested. Moreover, the morphologies and polymorphs of the precipitates at different reaction time are studied by the field emission scanning electron microscope (FE‐SEM) and X‐ray Diffraction (XRD). The results show that when Asp is not added in the Ca(OH)2 suspension, the precipitates are calcite, while the carbonization precipitates with Asp are vaterite. Furthermore, in the presence of Asp, the carbonization process in the Ca(OH)2 suspension has a coating‐fragmentation behavior, and vaterite aggregate grooves can be formed after 110 min. In particular, Asp plays an important role in the nucleation, crystallization, and growth of CaCO3, and then a novel formation mechanism of vaterite aggregate grooves is proposed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信