利用并行化和主动学习的基于信息的医疗干预模式探索

Chaitanya Kaligotla, J. Ozik, Nicholson T. Collier, C. Macal, K. Boyd, Jennifer A. Makelarski, E. Huang, S. Lindau
{"title":"利用并行化和主动学习的基于信息的医疗干预模式探索","authors":"Chaitanya Kaligotla, J. Ozik, Nicholson T. Collier, C. Macal, K. Boyd, Jennifer A. Makelarski, E. Huang, S. Lindau","doi":"10.2139/ssrn.3429164","DOIUrl":null,"url":null,"abstract":"This paper describes the application of a large-scale active learning method to characterize the parameter space of a computational agent-based model developed to investigate the impact of CommunityRx, a clinical information-based health intervention that provides patients with personalized information about local community resources to meet basic and self-care needs. The diffusion of information about community resources and their use is modeled via networked interactions and their subsequent effect on agents' use of community resources across an urban population. A random forest model is iteratively fitted to model evaluations to characterize the model parameter space with respect to observed empirical data. We demonstrate the feasibility of using high-performance computing and active learning model exploration techniques to characterize large parameter spaces; by partitioning the parameter space into potentially viable and non-viable regions, we rule out regions of space where simulation output is implausible to observed empirical data. We argue that such methods are necessary to enable model exploration in complex computational models that incorporate increasingly available micro-level behavior data. We provide public access to the model and high-performance computing experimentation code.","PeriodicalId":14675,"journal":{"name":"J. Artif. Soc. Soc. Simul.","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Model Exploration of an Information-Based Healthcare Intervention Using Parallelization and Active Learning\",\"authors\":\"Chaitanya Kaligotla, J. Ozik, Nicholson T. Collier, C. Macal, K. Boyd, Jennifer A. Makelarski, E. Huang, S. Lindau\",\"doi\":\"10.2139/ssrn.3429164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the application of a large-scale active learning method to characterize the parameter space of a computational agent-based model developed to investigate the impact of CommunityRx, a clinical information-based health intervention that provides patients with personalized information about local community resources to meet basic and self-care needs. The diffusion of information about community resources and their use is modeled via networked interactions and their subsequent effect on agents' use of community resources across an urban population. A random forest model is iteratively fitted to model evaluations to characterize the model parameter space with respect to observed empirical data. We demonstrate the feasibility of using high-performance computing and active learning model exploration techniques to characterize large parameter spaces; by partitioning the parameter space into potentially viable and non-viable regions, we rule out regions of space where simulation output is implausible to observed empirical data. We argue that such methods are necessary to enable model exploration in complex computational models that incorporate increasingly available micro-level behavior data. We provide public access to the model and high-performance computing experimentation code.\",\"PeriodicalId\":14675,\"journal\":{\"name\":\"J. Artif. Soc. Soc. Simul.\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Artif. Soc. Soc. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3429164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Artif. Soc. Soc. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3429164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文描述了一种大规模主动学习方法的应用,用于表征基于计算代理的模型的参数空间,该模型用于调查CommunityRx的影响,CommunityRx是一种基于临床信息的健康干预,为患者提供有关当地社区资源的个性化信息,以满足基本和自我保健需求。关于社区资源及其使用的信息扩散通过网络互动及其对城市人口中代理人使用社区资源的后续影响进行建模。随机森林模型迭代拟合模型评估,以表征模型参数空间相对于观测到的经验数据。我们证明了使用高性能计算和主动学习模型探索技术来表征大参数空间的可行性;通过将参数空间划分为潜在可行和不可行的区域,我们排除了模拟输出与观察到的经验数据不可信的空间区域。我们认为,这些方法对于在包含越来越多可用的微观行为数据的复杂计算模型中进行模型探索是必要的。我们提供了对模型和高性能计算实验代码的公共访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Exploration of an Information-Based Healthcare Intervention Using Parallelization and Active Learning
This paper describes the application of a large-scale active learning method to characterize the parameter space of a computational agent-based model developed to investigate the impact of CommunityRx, a clinical information-based health intervention that provides patients with personalized information about local community resources to meet basic and self-care needs. The diffusion of information about community resources and their use is modeled via networked interactions and their subsequent effect on agents' use of community resources across an urban population. A random forest model is iteratively fitted to model evaluations to characterize the model parameter space with respect to observed empirical data. We demonstrate the feasibility of using high-performance computing and active learning model exploration techniques to characterize large parameter spaces; by partitioning the parameter space into potentially viable and non-viable regions, we rule out regions of space where simulation output is implausible to observed empirical data. We argue that such methods are necessary to enable model exploration in complex computational models that incorporate increasingly available micro-level behavior data. We provide public access to the model and high-performance computing experimentation code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信