{"title":"考虑小尺度和表面效应的偶联正交异性蛋白微管浸入细胞质中的振动响应","authors":"A Ghorbanpour Arani, E. Haghparast, Z. K. Maraghi","doi":"10.1177/2397791417712851","DOIUrl":null,"url":null,"abstract":"In this research, orthotropic Euler–Bernoulli beam and Timoshenko beam models are developed to investigate vibrational behavior of coupled protein microtubules. Microtubules are hollow cylindrical filaments in the living cells which are surrounded by filament network, which is simulated by Winkler–Riley Model. Temperature-dependent material properties for microtubules are used to study the thermal effect on vibration frequency. To apply the size effect, nonlocal theory is utilized, and the motion equations are derived based on Hamilton’s principle. In order to examine reliability of presented study, effects of various parameters such as environmental conditions, temperature change, boundary conditions and small-scale parameters on vibration characteristics of isotropic and orthotropic microtubules for both Euler–Bernoulli beam and Timoshenko beam models are discussed in detail. Results revealed that dynamic behavior of coupled microtubules is strongly dependent on the surface elasticity modulus of cytosol, so that, increasing surface elasticity modulus leads to increase in frequency of coupled microtubules. Results of this investigation can be provided as a useful reference in bio-medical clinical application.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2017-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibrational response of coupled orthotropic protein microtubules immersed in cytosol considering small-scale and surface effects\",\"authors\":\"A Ghorbanpour Arani, E. Haghparast, Z. K. Maraghi\",\"doi\":\"10.1177/2397791417712851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, orthotropic Euler–Bernoulli beam and Timoshenko beam models are developed to investigate vibrational behavior of coupled protein microtubules. Microtubules are hollow cylindrical filaments in the living cells which are surrounded by filament network, which is simulated by Winkler–Riley Model. Temperature-dependent material properties for microtubules are used to study the thermal effect on vibration frequency. To apply the size effect, nonlocal theory is utilized, and the motion equations are derived based on Hamilton’s principle. In order to examine reliability of presented study, effects of various parameters such as environmental conditions, temperature change, boundary conditions and small-scale parameters on vibration characteristics of isotropic and orthotropic microtubules for both Euler–Bernoulli beam and Timoshenko beam models are discussed in detail. Results revealed that dynamic behavior of coupled microtubules is strongly dependent on the surface elasticity modulus of cytosol, so that, increasing surface elasticity modulus leads to increase in frequency of coupled microtubules. Results of this investigation can be provided as a useful reference in bio-medical clinical application.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2017-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2397791417712851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791417712851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Vibrational response of coupled orthotropic protein microtubules immersed in cytosol considering small-scale and surface effects
In this research, orthotropic Euler–Bernoulli beam and Timoshenko beam models are developed to investigate vibrational behavior of coupled protein microtubules. Microtubules are hollow cylindrical filaments in the living cells which are surrounded by filament network, which is simulated by Winkler–Riley Model. Temperature-dependent material properties for microtubules are used to study the thermal effect on vibration frequency. To apply the size effect, nonlocal theory is utilized, and the motion equations are derived based on Hamilton’s principle. In order to examine reliability of presented study, effects of various parameters such as environmental conditions, temperature change, boundary conditions and small-scale parameters on vibration characteristics of isotropic and orthotropic microtubules for both Euler–Bernoulli beam and Timoshenko beam models are discussed in detail. Results revealed that dynamic behavior of coupled microtubules is strongly dependent on the surface elasticity modulus of cytosol, so that, increasing surface elasticity modulus leads to increase in frequency of coupled microtubules. Results of this investigation can be provided as a useful reference in bio-medical clinical application.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.