PPT在平衡态的稳定性

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
M. Merkli, Mitch Zagrodnik
{"title":"PPT在平衡态的稳定性","authors":"M. Merkli, Mitch Zagrodnik","doi":"10.1139/cjp-2023-0086","DOIUrl":null,"url":null,"abstract":"We use simple spectral perturbation theory to show that the positive partial transpose property is stable under bounded perturbations of the Hamiltonian, for equilibrium states in infinite dimensions. The result holds provided the temperature is high enough, or equivalently, provided the perturbation is small enough.","PeriodicalId":9413,"journal":{"name":"Canadian Journal of Physics","volume":"30 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of PPT in equilibrium states\",\"authors\":\"M. Merkli, Mitch Zagrodnik\",\"doi\":\"10.1139/cjp-2023-0086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use simple spectral perturbation theory to show that the positive partial transpose property is stable under bounded perturbations of the Hamiltonian, for equilibrium states in infinite dimensions. The result holds provided the temperature is high enough, or equivalently, provided the perturbation is small enough.\",\"PeriodicalId\":9413,\"journal\":{\"name\":\"Canadian Journal of Physics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1139/cjp-2023-0086\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1139/cjp-2023-0086","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们用简单谱摄动理论证明了在无穷维平衡态的哈密顿量的有界摄动下,正偏转置性质是稳定的。只要温度足够高,或者说,只要扰动足够小,这个结果就成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of PPT in equilibrium states
We use simple spectral perturbation theory to show that the positive partial transpose property is stable under bounded perturbations of the Hamiltonian, for equilibrium states in infinite dimensions. The result holds provided the temperature is high enough, or equivalently, provided the perturbation is small enough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Journal of Physics
Canadian Journal of Physics 物理-物理:综合
CiteScore
2.30
自引率
8.30%
发文量
65
审稿时长
1.7 months
期刊介绍: The Canadian Journal of Physics publishes research articles, rapid communications, and review articles that report significant advances in research in physics, including atomic and molecular physics; condensed matter; elementary particles and fields; nuclear physics; gases, fluid dynamics, and plasmas; electromagnetism and optics; mathematical physics; interdisciplinary, classical, and applied physics; relativity and cosmology; physics education research; statistical mechanics and thermodynamics; quantum physics and quantum computing; gravitation and string theory; biophysics; aeronomy and space physics; and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信