{"title":"理想导电圆柱体的多极化角电磁辐射散射","authors":"Sandeep Narkimelli, H. Ochoa","doi":"10.1109/SSST.2010.5442805","DOIUrl":null,"url":null,"abstract":"Radar is a device which detects distant or non visible objects by means of reflected radio waves [1]. The quality of the reflected signal depends on the shape and orientation of the target with respect to the type of polarization used. Most of the antennas currently used on radar systems employ one type of polarization at a time for target detection. This paper describes the importance of employing polarizations of multiple angles on targets, approximately at the same instant of time. To implement this idea a generalized set of equations have been derived which represent the backscatter generated by a cylindrical object. Using different angles in these equations would give the backscatters of different polarizations employed on the same target, at small time intervals. The logic behind this is that there would be at least one angle that would have the maximum signal strength in the backscatter. The backscatter for this angle would satisfy the best quality criterion as compared with the rest of the polarization angles.","PeriodicalId":6463,"journal":{"name":"2010 42nd Southeastern Symposium on System Theory (SSST)","volume":"1 1","pages":"60-65"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scattering of electromagnetic radiation for a perfect electric conducting cylinder by using multiple angles of polarization\",\"authors\":\"Sandeep Narkimelli, H. Ochoa\",\"doi\":\"10.1109/SSST.2010.5442805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radar is a device which detects distant or non visible objects by means of reflected radio waves [1]. The quality of the reflected signal depends on the shape and orientation of the target with respect to the type of polarization used. Most of the antennas currently used on radar systems employ one type of polarization at a time for target detection. This paper describes the importance of employing polarizations of multiple angles on targets, approximately at the same instant of time. To implement this idea a generalized set of equations have been derived which represent the backscatter generated by a cylindrical object. Using different angles in these equations would give the backscatters of different polarizations employed on the same target, at small time intervals. The logic behind this is that there would be at least one angle that would have the maximum signal strength in the backscatter. The backscatter for this angle would satisfy the best quality criterion as compared with the rest of the polarization angles.\",\"PeriodicalId\":6463,\"journal\":{\"name\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"volume\":\"1 1\",\"pages\":\"60-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2010.5442805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 42nd Southeastern Symposium on System Theory (SSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2010.5442805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scattering of electromagnetic radiation for a perfect electric conducting cylinder by using multiple angles of polarization
Radar is a device which detects distant or non visible objects by means of reflected radio waves [1]. The quality of the reflected signal depends on the shape and orientation of the target with respect to the type of polarization used. Most of the antennas currently used on radar systems employ one type of polarization at a time for target detection. This paper describes the importance of employing polarizations of multiple angles on targets, approximately at the same instant of time. To implement this idea a generalized set of equations have been derived which represent the backscatter generated by a cylindrical object. Using different angles in these equations would give the backscatters of different polarizations employed on the same target, at small time intervals. The logic behind this is that there would be at least one angle that would have the maximum signal strength in the backscatter. The backscatter for this angle would satisfy the best quality criterion as compared with the rest of the polarization angles.