{"title":"多糖的亲水性研究","authors":"M. Ioelovich","doi":"10.30564/opmr.v3i2.4181","DOIUrl":null,"url":null,"abstract":"In this research, the structural characteristics, specific surface area, sorption of water vapor, and wetting enthalpy of various polysaccharides (cellulose, hemicelluloses, starch, pectin, chitin, and chitosan) have been studied. It was confirmed that crystallites are inaccessible for water, and therefore water molecules can interact only with polar groups in noncrystalline (amorphous) domains of biopolymers. The isotherms of water vapor sorption for various polysaccharides had sigmoid shapes, which can be explained by the absorption of water molecules in heterogeneous amorphous domains having clusters with different packing densities. The method of contributions of polar groups to sorption of water molecules was used, which allowed to derivate a simple calculating equation to describe the shape of sorption isotherms. The wetting of biopolymers with water was accompanied by a high exothermic thermal effect, in direct proportion to the amorphicity degree. The sorption values and wetting enthalpies of amorphous domains of biopolymers were calculated, which allowed to find the hydrophilicity index and compare the hydrophilicity of the various polysaccharides.","PeriodicalId":19583,"journal":{"name":"Organic Polymer Material Research","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Study of Hydrophilic Properties of Polysaccharides\",\"authors\":\"M. Ioelovich\",\"doi\":\"10.30564/opmr.v3i2.4181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the structural characteristics, specific surface area, sorption of water vapor, and wetting enthalpy of various polysaccharides (cellulose, hemicelluloses, starch, pectin, chitin, and chitosan) have been studied. It was confirmed that crystallites are inaccessible for water, and therefore water molecules can interact only with polar groups in noncrystalline (amorphous) domains of biopolymers. The isotherms of water vapor sorption for various polysaccharides had sigmoid shapes, which can be explained by the absorption of water molecules in heterogeneous amorphous domains having clusters with different packing densities. The method of contributions of polar groups to sorption of water molecules was used, which allowed to derivate a simple calculating equation to describe the shape of sorption isotherms. The wetting of biopolymers with water was accompanied by a high exothermic thermal effect, in direct proportion to the amorphicity degree. The sorption values and wetting enthalpies of amorphous domains of biopolymers were calculated, which allowed to find the hydrophilicity index and compare the hydrophilicity of the various polysaccharides.\",\"PeriodicalId\":19583,\"journal\":{\"name\":\"Organic Polymer Material Research\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Polymer Material Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30564/opmr.v3i2.4181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Polymer Material Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/opmr.v3i2.4181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of Hydrophilic Properties of Polysaccharides
In this research, the structural characteristics, specific surface area, sorption of water vapor, and wetting enthalpy of various polysaccharides (cellulose, hemicelluloses, starch, pectin, chitin, and chitosan) have been studied. It was confirmed that crystallites are inaccessible for water, and therefore water molecules can interact only with polar groups in noncrystalline (amorphous) domains of biopolymers. The isotherms of water vapor sorption for various polysaccharides had sigmoid shapes, which can be explained by the absorption of water molecules in heterogeneous amorphous domains having clusters with different packing densities. The method of contributions of polar groups to sorption of water molecules was used, which allowed to derivate a simple calculating equation to describe the shape of sorption isotherms. The wetting of biopolymers with water was accompanied by a high exothermic thermal effect, in direct proportion to the amorphicity degree. The sorption values and wetting enthalpies of amorphous domains of biopolymers were calculated, which allowed to find the hydrophilicity index and compare the hydrophilicity of the various polysaccharides.