高维sierpiŃski垫片上的谐波梯度

L. Brown, Giovanni Ferrer, Gamal Mograby, Luke G. Rogers, K. Sangam
{"title":"高维sierpiŃski垫片上的谐波梯度","authors":"L. Brown, Giovanni Ferrer, Gamal Mograby, Luke G. Rogers, K. Sangam","doi":"10.1142/s0218348x2050108x","DOIUrl":null,"url":null,"abstract":"We consider criteria for the differentiability of functions with continuous Laplacian on the Sierpinski Gasket and its higher-dimensional variants $SG_N$, $N>3$, proving results that generalize those of Teplyaev. When $SG_N$ is equipped with the standard Dirichlet form and measure $\\mu$ we show there is a full $\\mu$-measure set on which continuity of the Laplacian implies existence of the gradient $\\nabla u$, and that this set is not all of $SG_N$. We also show there is a class of non-uniform measures on the usual Sierpinski Gasket with the property that continuity of the Laplacian implies the gradient exists and is continuous everywhere, in sharp contrast to the case with the standard measure.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HARMONIC GRADIENTS ON HIGHER-DIMENSIONAL SIERPIŃSKI GASKETS\",\"authors\":\"L. Brown, Giovanni Ferrer, Gamal Mograby, Luke G. Rogers, K. Sangam\",\"doi\":\"10.1142/s0218348x2050108x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider criteria for the differentiability of functions with continuous Laplacian on the Sierpinski Gasket and its higher-dimensional variants $SG_N$, $N>3$, proving results that generalize those of Teplyaev. When $SG_N$ is equipped with the standard Dirichlet form and measure $\\\\mu$ we show there is a full $\\\\mu$-measure set on which continuity of the Laplacian implies existence of the gradient $\\\\nabla u$, and that this set is not all of $SG_N$. We also show there is a class of non-uniform measures on the usual Sierpinski Gasket with the property that continuity of the Laplacian implies the gradient exists and is continuous everywhere, in sharp contrast to the case with the standard measure.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x2050108x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x2050108x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了Sierpinski垫片及其高维变体$SG_N$, $N>3$上具有连续拉普拉斯函数的可微性判据,证明了推广Teplyaev的结果。当$SG_N$具有标准狄利克雷形式和测度$\mu$时,我们证明了存在一个完整的$\mu$测度集,在该集上拉普拉斯函数的连续性意味着梯度$\nabla u$的存在,并且该集不是全部的$SG_N$。我们还证明了在通常的Sierpinski垫片上存在一类非一致测度,其性质是拉普拉斯函数的连续性意味着梯度的存在并且处处连续,与标准测度的情况形成鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HARMONIC GRADIENTS ON HIGHER-DIMENSIONAL SIERPIŃSKI GASKETS
We consider criteria for the differentiability of functions with continuous Laplacian on the Sierpinski Gasket and its higher-dimensional variants $SG_N$, $N>3$, proving results that generalize those of Teplyaev. When $SG_N$ is equipped with the standard Dirichlet form and measure $\mu$ we show there is a full $\mu$-measure set on which continuity of the Laplacian implies existence of the gradient $\nabla u$, and that this set is not all of $SG_N$. We also show there is a class of non-uniform measures on the usual Sierpinski Gasket with the property that continuity of the Laplacian implies the gradient exists and is continuous everywhere, in sharp contrast to the case with the standard measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信