围产期缺氧与丘脑脑区:抗癫痫药物左乙拉西坦抑制神经末梢GABA释放的作用增强

M. Dudarenko, N. Pozdnyakova
{"title":"围产期缺氧与丘脑脑区:抗癫痫药物左乙拉西坦抑制神经末梢GABA释放的作用增强","authors":"M. Dudarenko, N. Pozdnyakova","doi":"10.15407/ubj94.05.028","DOIUrl":null,"url":null,"abstract":"Levetiracetam (LV), 2S-(2-oxo-1-pyrrolidiny1) butanamide, is an antiepileptic drug. The exact mechanisms of anticonvulsant effects of LV remain unclear. In this study, rats (Wistar strain) underwent hypoxia and seizures at the age of 10–12 postnatal days (pd). [3H]GABA release was analysed in isolated from thalamus nerve terminals (synaptosomes) during development at the age of pd 17–19 and pd 24–26 (infantile stage), pd 38–40 (puberty) and pd 66–73 (young adults) in control and after perinatal hypoxia. The extracellular level of [3H]GABA in the preparation of thalamic synaptosomes increased during development at the age of pd 38–40 and pd 66–73 as compared to earlier ones. LV did not influence the extracellular level of [3H]GABA in control and after perinatal hypoxia at all studied ages. Exocytotic [3H]GABA release in control increased at the age of pd 24–26 as compared to pd 17–19. After hypoxia, exocytotic [3H]GABA release from synaptosomes also increased during development. LV elevated [3H]GABA release from thalamic synaptosomes at the age of pd 66–73 after hypoxia and during blockage of GABA uptake by NO-711 only. LV realizes its antiepileptic effects at the presynaptic site through an increase in exocytotic release of [3H]GABA in thalamic synaptosomes after perinatal hypoxia at pd 66–73. LV exhibited a more significant effect in thalamic synaptosomes after perinatal hypoxia than in control ones. The action of LV is age-dependent, and the drug was inert at the infantile stage that can be useful for an LV application strategy in child epilepsy therapy. Keywords: brain development, exocytosis, GABA, levetiracetam, perinatal hypoxia, thalamic synaptosomes","PeriodicalId":23007,"journal":{"name":"The Ukrainian Biochemical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perinatal hypoxia and thalamus brain region: increased efficiency of antiepileptic drug levetiracetam to inhibit GABA release from nerve terminals\",\"authors\":\"M. Dudarenko, N. Pozdnyakova\",\"doi\":\"10.15407/ubj94.05.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Levetiracetam (LV), 2S-(2-oxo-1-pyrrolidiny1) butanamide, is an antiepileptic drug. The exact mechanisms of anticonvulsant effects of LV remain unclear. In this study, rats (Wistar strain) underwent hypoxia and seizures at the age of 10–12 postnatal days (pd). [3H]GABA release was analysed in isolated from thalamus nerve terminals (synaptosomes) during development at the age of pd 17–19 and pd 24–26 (infantile stage), pd 38–40 (puberty) and pd 66–73 (young adults) in control and after perinatal hypoxia. The extracellular level of [3H]GABA in the preparation of thalamic synaptosomes increased during development at the age of pd 38–40 and pd 66–73 as compared to earlier ones. LV did not influence the extracellular level of [3H]GABA in control and after perinatal hypoxia at all studied ages. Exocytotic [3H]GABA release in control increased at the age of pd 24–26 as compared to pd 17–19. After hypoxia, exocytotic [3H]GABA release from synaptosomes also increased during development. LV elevated [3H]GABA release from thalamic synaptosomes at the age of pd 66–73 after hypoxia and during blockage of GABA uptake by NO-711 only. LV realizes its antiepileptic effects at the presynaptic site through an increase in exocytotic release of [3H]GABA in thalamic synaptosomes after perinatal hypoxia at pd 66–73. LV exhibited a more significant effect in thalamic synaptosomes after perinatal hypoxia than in control ones. The action of LV is age-dependent, and the drug was inert at the infantile stage that can be useful for an LV application strategy in child epilepsy therapy. Keywords: brain development, exocytosis, GABA, levetiracetam, perinatal hypoxia, thalamic synaptosomes\",\"PeriodicalId\":23007,\"journal\":{\"name\":\"The Ukrainian Biochemical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ukrainian Biochemical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/ubj94.05.028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ukrainian Biochemical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ubj94.05.028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

左乙拉西坦(LV), 2S-(2-氧-1-吡咯烷基1)丁酰胺,是一种抗癫痫药物。左室钠抗惊厥作用的确切机制尚不清楚。在本研究中,Wistar品系大鼠在出生后10-12天(pd)发生缺氧和癫痫发作。[3H]对照和围产期缺氧后,pd 17-19岁、pd 24-26岁(婴儿期)、pd 38-40岁(青春期)和pd 66-73岁(青成期)发育期间丘脑神经末梢(突触体)离体GABA释放情况进行分析。在pd 38 ~ 40和pd 66 ~ 73的发育过程中,丘脑突触体制备中的[3H]GABA细胞外水平较早期增加。在所有研究年龄,对照组和围产儿缺氧后,LV均未影响[3H]GABA的细胞外水平。与pd 17-19相比,对照组在pd 24-26时胞外[3H]GABA释放增加。缺氧后突触体的胞外[3H]GABA释放也在发育过程中增加。低氧和NO-711阻断GABA摄取期间,LV升高了pd 66-73岁丘脑突触体的[3H]GABA释放。在pd 66-73时围产期缺氧后,LV通过增加丘脑突触小体[3H]GABA的胞外释放来实现突触前部位的抗癫痫作用。围生期缺氧后,LV对丘脑突触体的影响比对照组更显著。LV的作用是年龄依赖性的,药物在婴儿阶段是惰性的,这可以用于LV在儿童癫痫治疗中的应用策略。关键词:脑发育,胞吐,GABA,左乙拉西坦,围产期缺氧,丘脑突触体
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perinatal hypoxia and thalamus brain region: increased efficiency of antiepileptic drug levetiracetam to inhibit GABA release from nerve terminals
Levetiracetam (LV), 2S-(2-oxo-1-pyrrolidiny1) butanamide, is an antiepileptic drug. The exact mechanisms of anticonvulsant effects of LV remain unclear. In this study, rats (Wistar strain) underwent hypoxia and seizures at the age of 10–12 postnatal days (pd). [3H]GABA release was analysed in isolated from thalamus nerve terminals (synaptosomes) during development at the age of pd 17–19 and pd 24–26 (infantile stage), pd 38–40 (puberty) and pd 66–73 (young adults) in control and after perinatal hypoxia. The extracellular level of [3H]GABA in the preparation of thalamic synaptosomes increased during development at the age of pd 38–40 and pd 66–73 as compared to earlier ones. LV did not influence the extracellular level of [3H]GABA in control and after perinatal hypoxia at all studied ages. Exocytotic [3H]GABA release in control increased at the age of pd 24–26 as compared to pd 17–19. After hypoxia, exocytotic [3H]GABA release from synaptosomes also increased during development. LV elevated [3H]GABA release from thalamic synaptosomes at the age of pd 66–73 after hypoxia and during blockage of GABA uptake by NO-711 only. LV realizes its antiepileptic effects at the presynaptic site through an increase in exocytotic release of [3H]GABA in thalamic synaptosomes after perinatal hypoxia at pd 66–73. LV exhibited a more significant effect in thalamic synaptosomes after perinatal hypoxia than in control ones. The action of LV is age-dependent, and the drug was inert at the infantile stage that can be useful for an LV application strategy in child epilepsy therapy. Keywords: brain development, exocytosis, GABA, levetiracetam, perinatal hypoxia, thalamic synaptosomes
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信