不可压缩Navier-Stokes问题的配位有限体积法

IF 3.8 2区 数学 Q1 MATHEMATICS
K. Terekhov
{"title":"不可压缩Navier-Stokes问题的配位有限体积法","authors":"K. Terekhov","doi":"10.1515/jnma-2020-0008","DOIUrl":null,"url":null,"abstract":"Abstract A collocated finite-volume method for the incompressible Navier–Stokes problem is introduced. The method applies to general polyhedral grids and demonstrates higher than the first order of convergence. The velocity components and the pressure are approximated by piecewise-linear continuous and piecewise-constant fields, respectively. The method does not require artificial boundary conditions for pressure but requires stabilization term to suppress the error introduced by piecewise-constant pressure for convection-dominated problems. Both the momentum and continuity equations are approximated in a flux-conservative fashion, i.e., the conservation for both quantities is discretely exact. The attractive side of the method is a simple flux-based finite-volume construction of the scheme. Applicability of the method is demonstrated on several numerical tests using general polyhedral grids.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Collocated finite-volume method for the incompressible Navier–Stokes problem\",\"authors\":\"K. Terekhov\",\"doi\":\"10.1515/jnma-2020-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A collocated finite-volume method for the incompressible Navier–Stokes problem is introduced. The method applies to general polyhedral grids and demonstrates higher than the first order of convergence. The velocity components and the pressure are approximated by piecewise-linear continuous and piecewise-constant fields, respectively. The method does not require artificial boundary conditions for pressure but requires stabilization term to suppress the error introduced by piecewise-constant pressure for convection-dominated problems. Both the momentum and continuity equations are approximated in a flux-conservative fashion, i.e., the conservation for both quantities is discretely exact. The attractive side of the method is a simple flux-based finite-volume construction of the scheme. Applicability of the method is demonstrated on several numerical tests using general polyhedral grids.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2020-0008\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2020-0008","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要介绍了求解不可压缩Navier-Stokes问题的一种配位有限体积方法。该方法适用于一般多面体网格,具有高于一阶的收敛性。速度分量和压力分量分别近似为分段线性连续场和分段常数场。该方法不需要人为的压力边界条件,但需要稳定项来抑制对流主导问题中分段恒压力引入的误差。动量方程和连续性方程都以通量保守的方式近似,即两个量的守恒是离散精确的。该方法吸引人的一面是简单的基于通量的有限体积构造方案。通过对一般多面体网格的数值试验,验证了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collocated finite-volume method for the incompressible Navier–Stokes problem
Abstract A collocated finite-volume method for the incompressible Navier–Stokes problem is introduced. The method applies to general polyhedral grids and demonstrates higher than the first order of convergence. The velocity components and the pressure are approximated by piecewise-linear continuous and piecewise-constant fields, respectively. The method does not require artificial boundary conditions for pressure but requires stabilization term to suppress the error introduced by piecewise-constant pressure for convection-dominated problems. Both the momentum and continuity equations are approximated in a flux-conservative fashion, i.e., the conservation for both quantities is discretely exact. The attractive side of the method is a simple flux-based finite-volume construction of the scheme. Applicability of the method is demonstrated on several numerical tests using general polyhedral grids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信