自由群环的公理化

IF 0.1 Q4 MATHEMATICS
B. Fine, A. Gaglione, M. Kreuzer, G. Rosenberger, D. Spellman
{"title":"自由群环的公理化","authors":"B. Fine, A. Gaglione, M. Kreuzer, G. Rosenberger, D. Spellman","doi":"10.46298/jgcc.2021.13.2.8796","DOIUrl":null,"url":null,"abstract":"In [FGRS1,FGRS2] the relationship between the universal and elementary theory\nof a group ring $R[G]$ and the corresponding universal and elementary theory of\nthe associated group $G$ and ring $R$ was examined. Here we assume that $R$ is\na commutative ring with identity $1 \\ne 0$. Of course, these are relative to an\nappropriate logical language $L_0,L_1,L_2$ for groups, rings and group rings\nrespectively. Axiom systems for these were provided in [FGRS1]. In [FGRS1] it\nwas proved that if $R[G]$ is elementarily equivalent to $S[H]$ with respect to\n$L_{2}$, then simultaneously the group $G$ is elementarily equivalent to the\ngroup $H$ with respect to $L_{0}$, and the ring $R$ is elementarily equivalent\nto the ring $S$ with respect to $L_{1}$. We then let $F$ be a rank $2$ free\ngroup and $\\mathbb{Z}$ be the ring of integers. Examining the universal theory\nof the free group ring ${\\mathbb Z}[F]$ the hazy conjecture was made that the\nuniversal sentences true in ${\\mathbb Z}[F]$ are precisely the universal\nsentences true in $F$ modified appropriately for group ring theory and the\nconverse that the universal sentences true in $F$ are the universal sentences\ntrue in ${\\mathbb Z}[F]$ modified appropriately for group theory. In this paper\nwe show this conjecture to be true in terms of axiom systems for ${\\mathbb\nZ}[F]$.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Axiomatics of Free Group Rings\",\"authors\":\"B. Fine, A. Gaglione, M. Kreuzer, G. Rosenberger, D. Spellman\",\"doi\":\"10.46298/jgcc.2021.13.2.8796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [FGRS1,FGRS2] the relationship between the universal and elementary theory\\nof a group ring $R[G]$ and the corresponding universal and elementary theory of\\nthe associated group $G$ and ring $R$ was examined. Here we assume that $R$ is\\na commutative ring with identity $1 \\\\ne 0$. Of course, these are relative to an\\nappropriate logical language $L_0,L_1,L_2$ for groups, rings and group rings\\nrespectively. Axiom systems for these were provided in [FGRS1]. In [FGRS1] it\\nwas proved that if $R[G]$ is elementarily equivalent to $S[H]$ with respect to\\n$L_{2}$, then simultaneously the group $G$ is elementarily equivalent to the\\ngroup $H$ with respect to $L_{0}$, and the ring $R$ is elementarily equivalent\\nto the ring $S$ with respect to $L_{1}$. We then let $F$ be a rank $2$ free\\ngroup and $\\\\mathbb{Z}$ be the ring of integers. Examining the universal theory\\nof the free group ring ${\\\\mathbb Z}[F]$ the hazy conjecture was made that the\\nuniversal sentences true in ${\\\\mathbb Z}[F]$ are precisely the universal\\nsentences true in $F$ modified appropriately for group ring theory and the\\nconverse that the universal sentences true in $F$ are the universal sentences\\ntrue in ${\\\\mathbb Z}[F]$ modified appropriately for group theory. In this paper\\nwe show this conjecture to be true in terms of axiom systems for ${\\\\mathbb\\nZ}[F]$.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jgcc.2021.13.2.8796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jgcc.2021.13.2.8796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在[FGRS1,FGRS2]中,研究了群环$R[G]$的全称和初等理论与相应群$G$和环$R$的全称和初等理论之间的关系。这里我们假设$R$是具有单位元$1 \ ne0 $的交换环。当然,这些都是相对于适当的逻辑语言$L_0,L_1,L_2$,分别适用于群,环和群环。这些公理系统在[FGRS1]中提供。在[FGRS1]中证明了如果$R[G]$对$L_{2}$初等等价于$S[H]$,则同时群$G$对$L_{0}$初等等价于群$H$,环$R$对$L_{1}$初等等价于环$S$。然后设$F$为秩$2$ freegroup, $\mathbb{Z}$为整数环。考察了自由群环${\mathbb Z}[F]$的全称命题,提出了${\mathbb Z}[F]$中的全称命题为真,即${\mathbb Z}[F]$中的全称命题为真,即${\mathbb Z}[F]$中全称命题为真,即${\mathbb Z}[F]$中全称命题为真,即${\mathbb Z}[F]$中全称命题为真,即${\mathbb Z}[F]$中全称命题为真,即${\mathbb Z}[F]$中全称命题为真。在本文中,我们用${\mathbbZ}[F]$的公理系统证明了这个猜想的成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Axiomatics of Free Group Rings
In [FGRS1,FGRS2] the relationship between the universal and elementary theory of a group ring $R[G]$ and the corresponding universal and elementary theory of the associated group $G$ and ring $R$ was examined. Here we assume that $R$ is a commutative ring with identity $1 \ne 0$. Of course, these are relative to an appropriate logical language $L_0,L_1,L_2$ for groups, rings and group rings respectively. Axiom systems for these were provided in [FGRS1]. In [FGRS1] it was proved that if $R[G]$ is elementarily equivalent to $S[H]$ with respect to $L_{2}$, then simultaneously the group $G$ is elementarily equivalent to the group $H$ with respect to $L_{0}$, and the ring $R$ is elementarily equivalent to the ring $S$ with respect to $L_{1}$. We then let $F$ be a rank $2$ free group and $\mathbb{Z}$ be the ring of integers. Examining the universal theory of the free group ring ${\mathbb Z}[F]$ the hazy conjecture was made that the universal sentences true in ${\mathbb Z}[F]$ are precisely the universal sentences true in $F$ modified appropriately for group ring theory and the converse that the universal sentences true in $F$ are the universal sentences true in ${\mathbb Z}[F]$ modified appropriately for group theory. In this paper we show this conjecture to be true in terms of axiom systems for ${\mathbb Z}[F]$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信