统计收敛的复不确定序列

IF 1 Q1 MATHEMATICS
B. Das, P. Debnath, B. Tripathy
{"title":"统计收敛的复不确定序列","authors":"B. Das, P. Debnath, B. Tripathy","doi":"10.15330/cmp.14.1.135-146","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the study of statistical convergence of complex uncertain sequences in a given uncertainty space. We produce the relation between convergence and statistical convergence in an uncertain environment. We also initiate statistically Cauchy complex uncertain sequence to prove that a complex uncertain sequence is statistically convergent if and only if it is statistically Cauchy. We further characterize a statistically convergent complex uncertain sequence via boundedness and density operator.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On statistically convergent complex uncertain sequences\",\"authors\":\"B. Das, P. Debnath, B. Tripathy\",\"doi\":\"10.15330/cmp.14.1.135-146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the study of statistical convergence of complex uncertain sequences in a given uncertainty space. We produce the relation between convergence and statistical convergence in an uncertain environment. We also initiate statistically Cauchy complex uncertain sequence to prove that a complex uncertain sequence is statistically convergent if and only if it is statistically Cauchy. We further characterize a statistically convergent complex uncertain sequence via boundedness and density operator.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.1.135-146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.135-146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文扩展了复不确定序列在给定不确定空间中的统计收敛性的研究。给出了不确定环境下收敛性与统计收敛性的关系。我们还初始化了统计柯西复不确定序列,证明了一个复不确定序列当且仅当它是统计柯西的是统计收敛的。利用有界性和密度算子进一步刻画了统计收敛的复不确定序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On statistically convergent complex uncertain sequences
In this paper, we extend the study of statistical convergence of complex uncertain sequences in a given uncertainty space. We produce the relation between convergence and statistical convergence in an uncertain environment. We also initiate statistically Cauchy complex uncertain sequence to prove that a complex uncertain sequence is statistically convergent if and only if it is statistically Cauchy. We further characterize a statistically convergent complex uncertain sequence via boundedness and density operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信