{"title":"统计收敛的复不确定序列","authors":"B. Das, P. Debnath, B. Tripathy","doi":"10.15330/cmp.14.1.135-146","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the study of statistical convergence of complex uncertain sequences in a given uncertainty space. We produce the relation between convergence and statistical convergence in an uncertain environment. We also initiate statistically Cauchy complex uncertain sequence to prove that a complex uncertain sequence is statistically convergent if and only if it is statistically Cauchy. We further characterize a statistically convergent complex uncertain sequence via boundedness and density operator.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On statistically convergent complex uncertain sequences\",\"authors\":\"B. Das, P. Debnath, B. Tripathy\",\"doi\":\"10.15330/cmp.14.1.135-146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the study of statistical convergence of complex uncertain sequences in a given uncertainty space. We produce the relation between convergence and statistical convergence in an uncertain environment. We also initiate statistically Cauchy complex uncertain sequence to prove that a complex uncertain sequence is statistically convergent if and only if it is statistically Cauchy. We further characterize a statistically convergent complex uncertain sequence via boundedness and density operator.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.1.135-146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.135-146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On statistically convergent complex uncertain sequences
In this paper, we extend the study of statistical convergence of complex uncertain sequences in a given uncertainty space. We produce the relation between convergence and statistical convergence in an uncertain environment. We also initiate statistically Cauchy complex uncertain sequence to prove that a complex uncertain sequence is statistically convergent if and only if it is statistically Cauchy. We further characterize a statistically convergent complex uncertain sequence via boundedness and density operator.