{"title":"Cu-Al-Mn形状记忆合金薄片晶粒生长和拉伸循环对阻尼性能影响的研究进展","authors":"Dusan Milosavljevic, N. Lecis, S. Cinquemani","doi":"10.1117/12.2658393","DOIUrl":null,"url":null,"abstract":"State-of-the-art research shows that an increase in relative grain size in Cu-Al-Mn SMA leads to improved damping and SME performance. Building on that knowledge, the authors of this paper seek to understand if it is possible to exploit these improvements within a Cu-Al-Mn alloy, specifically, in the form of thin sheets. A series of thermomechanical treatments were applied to as-cast ingots of a Cu-Al-Mn shape memory alloy with the goal of obtaining thin sheets characterized by a high value of relative grain size. Additionally, samples of Cu-Al-Mn sheets were subjected to tensile cycling for the purpose of SMA “training”. Through optical microscopy, the authors of this paper investigated the effects of the applied treatments on the alloy structure. Furthermore, the phase transformation and damping behavior were studied using dynamic mechanical analysis (DMA). Methodology and preliminary results are presented in this paper.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"27 1","pages":"124830L - 124830L-10"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress on the study of grain growth and tensile cycling effects on the damping performance in Cu-Al-Mn shape memory alloy thin sheets\",\"authors\":\"Dusan Milosavljevic, N. Lecis, S. Cinquemani\",\"doi\":\"10.1117/12.2658393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art research shows that an increase in relative grain size in Cu-Al-Mn SMA leads to improved damping and SME performance. Building on that knowledge, the authors of this paper seek to understand if it is possible to exploit these improvements within a Cu-Al-Mn alloy, specifically, in the form of thin sheets. A series of thermomechanical treatments were applied to as-cast ingots of a Cu-Al-Mn shape memory alloy with the goal of obtaining thin sheets characterized by a high value of relative grain size. Additionally, samples of Cu-Al-Mn sheets were subjected to tensile cycling for the purpose of SMA “training”. Through optical microscopy, the authors of this paper investigated the effects of the applied treatments on the alloy structure. Furthermore, the phase transformation and damping behavior were studied using dynamic mechanical analysis (DMA). Methodology and preliminary results are presented in this paper.\",\"PeriodicalId\":89272,\"journal\":{\"name\":\"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics\",\"volume\":\"27 1\",\"pages\":\"124830L - 124830L-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2658393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2658393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Progress on the study of grain growth and tensile cycling effects on the damping performance in Cu-Al-Mn shape memory alloy thin sheets
State-of-the-art research shows that an increase in relative grain size in Cu-Al-Mn SMA leads to improved damping and SME performance. Building on that knowledge, the authors of this paper seek to understand if it is possible to exploit these improvements within a Cu-Al-Mn alloy, specifically, in the form of thin sheets. A series of thermomechanical treatments were applied to as-cast ingots of a Cu-Al-Mn shape memory alloy with the goal of obtaining thin sheets characterized by a high value of relative grain size. Additionally, samples of Cu-Al-Mn sheets were subjected to tensile cycling for the purpose of SMA “training”. Through optical microscopy, the authors of this paper investigated the effects of the applied treatments on the alloy structure. Furthermore, the phase transformation and damping behavior were studied using dynamic mechanical analysis (DMA). Methodology and preliminary results are presented in this paper.