Slice-PASEF: LC-MS蛋白质组学中离子利用率最大化。

Ludwig R Sinn, Lukasz Szyrwiel, Justus Grossmann, Kate Lau, Katharina Faisst, Di Qin, Florian Mutschler, Luke Khoury, Andrew Leduc, Markus Ralser, Fabian Coscia, Matthias Selbach, Nikolai Slavov, Nagarjuna Nagaraj, Martin Steger, Vadim Demichev
{"title":"Slice-PASEF: LC-MS蛋白质组学中离子利用率最大化。","authors":"Ludwig R Sinn, Lukasz Szyrwiel, Justus Grossmann, Kate Lau, Katharina Faisst, Di Qin, Florian Mutschler, Luke Khoury, Andrew Leduc, Markus Ralser, Fabian Coscia, Matthias Selbach, Nikolai Slavov, Nagarjuna Nagaraj, Martin Steger, Vadim Demichev","doi":"10.1101/2022.10.31.514544","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative mass spectrometry (MS)-based proteomics has become a streamlined technology with a wide range of usage. Many emerging applications, such as single-cell proteomics, spatial proteomics of tissue sections and the profiling of low-abundant posttranslational modifications, require the analysis of minimal sample amounts and are thus constrained by the sensitivity of the workflow. Here, we present Slice-PASEF, a mass spectrometry technology that leverages trapped ion mobility separation of ions to attain the theoretical maximum of tandem MS sensitivity. We implement Slice-PASEF using a new module in our DIA-NN software and show that Slice-PASEF uniquely enables precise quantitative proteomics of low sample amounts. We further demonstrate its utility towards a range of applications, including single cell proteomics and degrader drug screens via ubiquitinomics.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12424990/pdf/","citationCount":"0","resultStr":"{\"title\":\"Slice-PASEF: Maximising Ion Utilisation in LC-MS Proteomics.\",\"authors\":\"Ludwig R Sinn, Lukasz Szyrwiel, Justus Grossmann, Kate Lau, Katharina Faisst, Di Qin, Florian Mutschler, Luke Khoury, Andrew Leduc, Markus Ralser, Fabian Coscia, Matthias Selbach, Nikolai Slavov, Nagarjuna Nagaraj, Martin Steger, Vadim Demichev\",\"doi\":\"10.1101/2022.10.31.514544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative mass spectrometry (MS)-based proteomics has become a streamlined technology with a wide range of usage. Many emerging applications, such as single-cell proteomics, spatial proteomics of tissue sections and the profiling of low-abundant posttranslational modifications, require the analysis of minimal sample amounts and are thus constrained by the sensitivity of the workflow. Here, we present Slice-PASEF, a mass spectrometry technology that leverages trapped ion mobility separation of ions to attain the theoretical maximum of tandem MS sensitivity. We implement Slice-PASEF using a new module in our DIA-NN software and show that Slice-PASEF uniquely enables precise quantitative proteomics of low sample amounts. We further demonstrate its utility towards a range of applications, including single cell proteomics and degrader drug screens via ubiquitinomics.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12424990/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2022.10.31.514544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2022.10.31.514544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于质谱(MS)的蛋白质组学已成为一种具有广泛用途的流线型技术。许多新兴的应用,如单细胞蛋白质组学、组织切片的空间蛋白质组学和低丰度翻译后修饰的分析,需要分析最小样本量,因此受到工作流程敏感性的限制。在这里,我们提出了Slice-PASEF,一种质谱技术,利用离子的捕获离子迁移率分离来达到串联质谱灵敏度的理论最大值。我们在我们的DIA-NN软件中使用一个新的模块实现了Slice-PASEF,并表明Slice-PASEF独特地实现了低样本量的精确定量蛋白质组学。我们进一步证明了它在一系列应用中的实用性,包括单细胞蛋白质组学和通过泛素组学筛选降解药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Slice-PASEF: Maximising Ion Utilisation in LC-MS Proteomics.

Slice-PASEF: Maximising Ion Utilisation in LC-MS Proteomics.

Slice-PASEF: Maximising Ion Utilisation in LC-MS Proteomics.

Slice-PASEF: Maximising Ion Utilisation in LC-MS Proteomics.

Quantitative mass spectrometry (MS)-based proteomics has become a streamlined technology with a wide range of usage. Many emerging applications, such as single-cell proteomics, spatial proteomics of tissue sections and the profiling of low-abundant posttranslational modifications, require the analysis of minimal sample amounts and are thus constrained by the sensitivity of the workflow. Here, we present Slice-PASEF, a mass spectrometry technology that leverages trapped ion mobility separation of ions to attain the theoretical maximum of tandem MS sensitivity. We implement Slice-PASEF using a new module in our DIA-NN software and show that Slice-PASEF uniquely enables precise quantitative proteomics of low sample amounts. We further demonstrate its utility towards a range of applications, including single cell proteomics and degrader drug screens via ubiquitinomics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信