利用双延迟反馈增强光混沌发生器

R. I. Ibrahim
{"title":"利用双延迟反馈增强光混沌发生器","authors":"R. I. Ibrahim","doi":"10.48129/kjs.17025","DOIUrl":null,"url":null,"abstract":"Chaotic lasers are widely used in secure communication, optical detection and other applications due to their noise-like randomness, excellent anti-jamming and other advantages. This research looks into the chaotic laser's performance at a low cost. The performance related to a semiconductor laser with double delayed feedback is observed and its characteristics are determined in experimental research utilizing OptiSystem simulator. The chaotic laser output is fed back to the Mach-Zehnder modulator (MZM) to make the original system. The gain coefficient changes dynamically, and a second time delay is introduced into the system. The feedback time and feedback strength of the improved chaotic system are studied under varying input bias current, frequency and modulation beak current. Bifurcation diagram results show that the chaotic laser output by the optoelectronic oscillator (OEO) is more complex and has lower delay characteristics. This method does not increase too much Under the premise of system cost, more complex chaotic signals can be generated, and the signal delay characteristics can be reduced, which is conducive to improving the security of the communication system.","PeriodicalId":49933,"journal":{"name":"Kuwait Journal of Science & Engineering","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Optical Chaos Generator using Double Delayed Feedback\",\"authors\":\"R. I. Ibrahim\",\"doi\":\"10.48129/kjs.17025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chaotic lasers are widely used in secure communication, optical detection and other applications due to their noise-like randomness, excellent anti-jamming and other advantages. This research looks into the chaotic laser's performance at a low cost. The performance related to a semiconductor laser with double delayed feedback is observed and its characteristics are determined in experimental research utilizing OptiSystem simulator. The chaotic laser output is fed back to the Mach-Zehnder modulator (MZM) to make the original system. The gain coefficient changes dynamically, and a second time delay is introduced into the system. The feedback time and feedback strength of the improved chaotic system are studied under varying input bias current, frequency and modulation beak current. Bifurcation diagram results show that the chaotic laser output by the optoelectronic oscillator (OEO) is more complex and has lower delay characteristics. This method does not increase too much Under the premise of system cost, more complex chaotic signals can be generated, and the signal delay characteristics can be reduced, which is conducive to improving the security of the communication system.\",\"PeriodicalId\":49933,\"journal\":{\"name\":\"Kuwait Journal of Science & Engineering\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48129/kjs.17025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48129/kjs.17025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

混沌激光器由于具有类噪声随机性、优异的抗干扰性等优点,广泛应用于保密通信、光学检测等领域。本研究探讨了低成本混沌激光器的性能。利用OptiSystem仿真器对双延迟反馈半导体激光器的性能进行了观察,并确定了双延迟反馈半导体激光器的特性。混沌激光输出被反馈到马赫-曾德尔调制器(MZM),形成原始系统。增益系数动态变化,并在系统中引入二次延时。研究了不同输入偏置电流、频率和调制喙电流下改进混沌系统的反馈时间和反馈强度。分岔图结果表明,光电振荡器(OEO)输出的混沌激光更复杂,具有较低的延迟特性。这种方法在不增加太多系统成本的前提下,可以产生更复杂的混沌信号,并且可以降低信号的延迟特性,有利于提高通信系统的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of Optical Chaos Generator using Double Delayed Feedback
Chaotic lasers are widely used in secure communication, optical detection and other applications due to their noise-like randomness, excellent anti-jamming and other advantages. This research looks into the chaotic laser's performance at a low cost. The performance related to a semiconductor laser with double delayed feedback is observed and its characteristics are determined in experimental research utilizing OptiSystem simulator. The chaotic laser output is fed back to the Mach-Zehnder modulator (MZM) to make the original system. The gain coefficient changes dynamically, and a second time delay is introduced into the system. The feedback time and feedback strength of the improved chaotic system are studied under varying input bias current, frequency and modulation beak current. Bifurcation diagram results show that the chaotic laser output by the optoelectronic oscillator (OEO) is more complex and has lower delay characteristics. This method does not increase too much Under the premise of system cost, more complex chaotic signals can be generated, and the signal delay characteristics can be reduced, which is conducive to improving the security of the communication system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kuwait Journal of Science & Engineering
Kuwait Journal of Science & Engineering MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信