Rikio Ichishima, F. Muntaner-Batle, M. Rius-Font, Yukio Takahashi
{"title":"带限制的图的度序列","authors":"Rikio Ichishima, F. Muntaner-Batle, M. Rius-Font, Yukio Takahashi","doi":"10.19184/ijc.2021.5.2.2","DOIUrl":null,"url":null,"abstract":"<p>Two finite sequences <em>s</em><sub>1 </sub>and <em>s</em><sub>2</sub> of nonnegative integers are called bigraphical if there exists a bipartite graph <em>G</em> with partite sets <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub> such that <em>s</em><sub>1</sub> and <em>s</em><sub>2</sub> are the degrees in <em>G </em>of the vertices in <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub>, respectively. In this paper, we introduce the concept of <em>1</em>-graphical sequences and present a necessary and sufficient condition for a sequence to be <em>1</em>-graphical in terms of bigraphical sequences.</p>","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The degree sequences of a graph with restrictions\",\"authors\":\"Rikio Ichishima, F. Muntaner-Batle, M. Rius-Font, Yukio Takahashi\",\"doi\":\"10.19184/ijc.2021.5.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two finite sequences <em>s</em><sub>1 </sub>and <em>s</em><sub>2</sub> of nonnegative integers are called bigraphical if there exists a bipartite graph <em>G</em> with partite sets <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub> such that <em>s</em><sub>1</sub> and <em>s</em><sub>2</sub> are the degrees in <em>G </em>of the vertices in <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub>, respectively. In this paper, we introduce the concept of <em>1</em>-graphical sequences and present a necessary and sufficient condition for a sequence to be <em>1</em>-graphical in terms of bigraphical sequences.</p>\",\"PeriodicalId\":13506,\"journal\":{\"name\":\"Indonesian Journal of Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/ijc.2021.5.2.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/ijc.2021.5.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two finite sequences s1 and s2 of nonnegative integers are called bigraphical if there exists a bipartite graph G with partite sets V1 and V2 such that s1 and s2 are the degrees in G of the vertices in V1 and V2, respectively. In this paper, we introduce the concept of 1-graphical sequences and present a necessary and sufficient condition for a sequence to be 1-graphical in terms of bigraphical sequences.