带限制的图的度序列

Rikio Ichishima, F. Muntaner-Batle, M. Rius-Font, Yukio Takahashi
{"title":"带限制的图的度序列","authors":"Rikio Ichishima, F. Muntaner-Batle, M. Rius-Font, Yukio Takahashi","doi":"10.19184/ijc.2021.5.2.2","DOIUrl":null,"url":null,"abstract":"<p>Two finite sequences <em>s</em><sub>1 </sub>and <em>s</em><sub>2</sub> of nonnegative integers are called bigraphical if there exists a bipartite graph <em>G</em> with partite sets <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub> such that <em>s</em><sub>1</sub> and <em>s</em><sub>2</sub> are the degrees in <em>G </em>of the vertices in <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub>, respectively. In this paper, we introduce the concept of <em>1</em>-graphical sequences and present a necessary and sufficient condition for a sequence to be <em>1</em>-graphical in terms of bigraphical sequences.</p>","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The degree sequences of a graph with restrictions\",\"authors\":\"Rikio Ichishima, F. Muntaner-Batle, M. Rius-Font, Yukio Takahashi\",\"doi\":\"10.19184/ijc.2021.5.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two finite sequences <em>s</em><sub>1 </sub>and <em>s</em><sub>2</sub> of nonnegative integers are called bigraphical if there exists a bipartite graph <em>G</em> with partite sets <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub> such that <em>s</em><sub>1</sub> and <em>s</em><sub>2</sub> are the degrees in <em>G </em>of the vertices in <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub>, respectively. In this paper, we introduce the concept of <em>1</em>-graphical sequences and present a necessary and sufficient condition for a sequence to be <em>1</em>-graphical in terms of bigraphical sequences.</p>\",\"PeriodicalId\":13506,\"journal\":{\"name\":\"Indonesian Journal of Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/ijc.2021.5.2.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/ijc.2021.5.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果存在一个具有部集V1和V2的二部图G,且s1和s2分别是V1和V2中的顶点在G中的度,则两个非负整数的有限序列s1和s2称为二部图。本文引入了1图序列的概念,并从1图序列的角度给出了一个1图序列的充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The degree sequences of a graph with restrictions

Two finite sequences s1 and s2 of nonnegative integers are called bigraphical if there exists a bipartite graph G with partite sets V1 and V2 such that s1 and s2 are the degrees in G of the vertices in V1 and V2, respectively. In this paper, we introduce the concept of 1-graphical sequences and present a necessary and sufficient condition for a sequence to be 1-graphical in terms of bigraphical sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信