Sarah Cousineau Abdurahim Rakhman, M. A. Aleksandrov, V. Danilov, T. Gorlov, Yun Liu, C. Long, A. Menshov, M. Plum, A. Shishlo, Andrew Webster David Johnson
{"title":"微秒持续时间光束的高效激光辅助H电荷交换","authors":"Sarah Cousineau Abdurahim Rakhman, M. A. Aleksandrov, V. Danilov, T. Gorlov, Yun Liu, C. Long, A. Menshov, M. Plum, A. Shishlo, Andrew Webster David Johnson","doi":"10.1103/PhysRevAccelBeams.20.120402","DOIUrl":null,"url":null,"abstract":"Laser-assisted stripping is a novel approach to H- charge exchange that overcomes long-standing limitations associated with the traditional, foil-based method of producing high-intensity, time-structured beams of protons. This paper reports on the first successful demonstration of the laser stripping technique for microsecond duration beams. The experiment represents a factor of 1000 increase in the stripped pulse duration compared with the previous proof-of-principle demonstration. The central theme of the experiment is the implementation of methods to reduce the required average laser power such that high efficiency stripping can be accomplished for microsecond duration beams using conventional laser technology. The experiment was performed on the Spallation Neutron Source 1 GeV H- beam using a 1 MW peak power UV laser and resulted in ~95% stripping efficiency.","PeriodicalId":8436,"journal":{"name":"arXiv: Accelerator Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"High efficiency laser-assisted H- charge exchange for microsecond duration beams\",\"authors\":\"Sarah Cousineau Abdurahim Rakhman, M. A. Aleksandrov, V. Danilov, T. Gorlov, Yun Liu, C. Long, A. Menshov, M. Plum, A. Shishlo, Andrew Webster David Johnson\",\"doi\":\"10.1103/PhysRevAccelBeams.20.120402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser-assisted stripping is a novel approach to H- charge exchange that overcomes long-standing limitations associated with the traditional, foil-based method of producing high-intensity, time-structured beams of protons. This paper reports on the first successful demonstration of the laser stripping technique for microsecond duration beams. The experiment represents a factor of 1000 increase in the stripped pulse duration compared with the previous proof-of-principle demonstration. The central theme of the experiment is the implementation of methods to reduce the required average laser power such that high efficiency stripping can be accomplished for microsecond duration beams using conventional laser technology. The experiment was performed on the Spallation Neutron Source 1 GeV H- beam using a 1 MW peak power UV laser and resulted in ~95% stripping efficiency.\",\"PeriodicalId\":8436,\"journal\":{\"name\":\"arXiv: Accelerator Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Accelerator Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevAccelBeams.20.120402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevAccelBeams.20.120402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High efficiency laser-assisted H- charge exchange for microsecond duration beams
Laser-assisted stripping is a novel approach to H- charge exchange that overcomes long-standing limitations associated with the traditional, foil-based method of producing high-intensity, time-structured beams of protons. This paper reports on the first successful demonstration of the laser stripping technique for microsecond duration beams. The experiment represents a factor of 1000 increase in the stripped pulse duration compared with the previous proof-of-principle demonstration. The central theme of the experiment is the implementation of methods to reduce the required average laser power such that high efficiency stripping can be accomplished for microsecond duration beams using conventional laser technology. The experiment was performed on the Spallation Neutron Source 1 GeV H- beam using a 1 MW peak power UV laser and resulted in ~95% stripping efficiency.