稳定双立方Hermite bsamzier有限元法及其在托卡马克大量材料注入过程中气等离子体相互作用的应用

A. Bhole, B. Nkonga, José Costa, G. Huijsmans, S. Pamela, M. Hoelzl
{"title":"稳定双立方Hermite bsamzier有限元法及其在托卡马克大量材料注入过程中气等离子体相互作用的应用","authors":"A. Bhole, B. Nkonga, José Costa, G. Huijsmans, S. Pamela, M. Hoelzl","doi":"10.2139/ssrn.4359796","DOIUrl":null,"url":null,"abstract":"Development of a numerical tool based upon the high-order, high-resolution Galerkin finite element method (FEM) often encounters two challenges: First, the Galerkin FEMs give central approximations to the differential operators and their use in the simulation of the convection-dominated flows may lead to the dispersion errors yielding entirely wrong numerical solutions. Secondly, high-order, high-resolution numerical methods are known to produce high wave-number oscillations in the vicinity of shocks/discontinuities in the numerical solution adversely affecting the stability of the method. We present the stabilized finite element method for plasma fluid models to address the two challenges. The numerical stabilization is based on two strategies: Variational Multiscale (VMS) and the shock-capturing approach. The former strategy takes into account (the approximation of) the effect of the unresolved scales onto resolved scales to introduce upwinding in the Galerkin FEM. The latter adaptively adds the artificial viscosity only in the vicinity of shocks. These numerical stabilization strategies are applied to stabilize the bi-cubic Hermite B´ezier FEM in the computational framework of the nonlinear magnetohy-drodynamics (MHD) code JOREK. The application of the stabilized FEM to the challenging simulation of Shattered Pellet Injection (SPI) in JET-like plasma is presented. It is shown that","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stabilized bi-cubic Hermite Bézier finite element method with application to gas-plasma interactions occurring during massive material injection in tokamaks\",\"authors\":\"A. Bhole, B. Nkonga, José Costa, G. Huijsmans, S. Pamela, M. Hoelzl\",\"doi\":\"10.2139/ssrn.4359796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of a numerical tool based upon the high-order, high-resolution Galerkin finite element method (FEM) often encounters two challenges: First, the Galerkin FEMs give central approximations to the differential operators and their use in the simulation of the convection-dominated flows may lead to the dispersion errors yielding entirely wrong numerical solutions. Secondly, high-order, high-resolution numerical methods are known to produce high wave-number oscillations in the vicinity of shocks/discontinuities in the numerical solution adversely affecting the stability of the method. We present the stabilized finite element method for plasma fluid models to address the two challenges. The numerical stabilization is based on two strategies: Variational Multiscale (VMS) and the shock-capturing approach. The former strategy takes into account (the approximation of) the effect of the unresolved scales onto resolved scales to introduce upwinding in the Galerkin FEM. The latter adaptively adds the artificial viscosity only in the vicinity of shocks. These numerical stabilization strategies are applied to stabilize the bi-cubic Hermite B´ezier FEM in the computational framework of the nonlinear magnetohy-drodynamics (MHD) code JOREK. The application of the stabilized FEM to the challenging simulation of Shattered Pellet Injection (SPI) in JET-like plasma is presented. It is shown that\",\"PeriodicalId\":10572,\"journal\":{\"name\":\"Comput. Math. Appl.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4359796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4359796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于高阶、高分辨率Galerkin有限元法(FEM)的数值工具的开发经常遇到两个挑战:首先,Galerkin有限元法给出了微分算子的中心逼近,在对流主导流的模拟中使用Galerkin有限元法可能导致色散误差产生完全错误的数值解。其次,已知高阶、高分辨率数值方法会在数值解的冲击/不连续点附近产生高波数振荡,从而对方法的稳定性产生不利影响。为了解决这两个问题,我们提出了等离子体流体模型的稳定有限元方法。数值稳定是基于两种策略:变分多尺度(VMS)和冲击捕获方法。前一种策略考虑了未解析尺度对已解析尺度的影响(近似),在伽辽金有限元法中引入了上绕。后者仅在冲击附近自适应地添加人工粘度。在非线性磁流体动力学(MHD)程序JOREK的计算框架中,应用这些数值稳定策略来稳定双立方Hermite B´ezier有限元。介绍了稳定有限元法在类射流等离子体中破碎颗粒喷射(SPI)模拟中的应用。结果表明
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilized bi-cubic Hermite Bézier finite element method with application to gas-plasma interactions occurring during massive material injection in tokamaks
Development of a numerical tool based upon the high-order, high-resolution Galerkin finite element method (FEM) often encounters two challenges: First, the Galerkin FEMs give central approximations to the differential operators and their use in the simulation of the convection-dominated flows may lead to the dispersion errors yielding entirely wrong numerical solutions. Secondly, high-order, high-resolution numerical methods are known to produce high wave-number oscillations in the vicinity of shocks/discontinuities in the numerical solution adversely affecting the stability of the method. We present the stabilized finite element method for plasma fluid models to address the two challenges. The numerical stabilization is based on two strategies: Variational Multiscale (VMS) and the shock-capturing approach. The former strategy takes into account (the approximation of) the effect of the unresolved scales onto resolved scales to introduce upwinding in the Galerkin FEM. The latter adaptively adds the artificial viscosity only in the vicinity of shocks. These numerical stabilization strategies are applied to stabilize the bi-cubic Hermite B´ezier FEM in the computational framework of the nonlinear magnetohy-drodynamics (MHD) code JOREK. The application of the stabilized FEM to the challenging simulation of Shattered Pellet Injection (SPI) in JET-like plasma is presented. It is shown that
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信