Anupama Ganguly, P. Biswas, Chiranjit Sain, T. Ustun
{"title":"可持续纳米网格和皮网格中最大功率输出的现代DC-DC功率转换器拓扑和混合控制策略综述","authors":"Anupama Ganguly, P. Biswas, Chiranjit Sain, T. Ustun","doi":"10.3390/technologies11040102","DOIUrl":null,"url":null,"abstract":"Sustainable energy exhibited immense growth in the last few years. As compared to other sustainable sources, solar power is proved to be the most feasible source due to some unanticipated characteristics, such as being clean, noiseless, ecofriendly, etc. The output from the solar power is entirely unpredictable since solar power generation is dependent on the intensity of solar irradiation and solar panel temperature. Further, these parameters are weather dependent and thus intermittent in nature. To conquer intermittency, power converters play an important role in solar power generation. Generally, photovoltaic systems will eventually suffer from a decrease in energy conversion efficiency along with improper stability and intermittent properties. As a result, the maximum power point tracking (MPPT) algorithm must be incorporated to cultivate maximum power from solar power. To make solar power generation reliable, a proper control technique must be added to the DC–DC power converter topologies. Furthermore, this study reviewed the progress of the maximum power point tracking algorithm and included an in-depth discussion on modern and both unidirectional and bidirectional DC–DC power converter topologies for harvesting electric power. Lastly, for the reliability and continuity of the power demand and to allow for distributed generation, this article also established the possibility of integrating solar PV systems into nanogrids and picogrids in a sustainable environment. The outcome of this comprehensive survey would be of strong interest to the researchers, technologists, and the industry in the relevant field to carry out future research.","PeriodicalId":22341,"journal":{"name":"Technologies","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modern DC–DC Power Converter Topologies and Hybrid Control Strategies for Maximum Power Output in Sustainable Nanogrids and Picogrids—A Comprehensive Survey\",\"authors\":\"Anupama Ganguly, P. Biswas, Chiranjit Sain, T. Ustun\",\"doi\":\"10.3390/technologies11040102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustainable energy exhibited immense growth in the last few years. As compared to other sustainable sources, solar power is proved to be the most feasible source due to some unanticipated characteristics, such as being clean, noiseless, ecofriendly, etc. The output from the solar power is entirely unpredictable since solar power generation is dependent on the intensity of solar irradiation and solar panel temperature. Further, these parameters are weather dependent and thus intermittent in nature. To conquer intermittency, power converters play an important role in solar power generation. Generally, photovoltaic systems will eventually suffer from a decrease in energy conversion efficiency along with improper stability and intermittent properties. As a result, the maximum power point tracking (MPPT) algorithm must be incorporated to cultivate maximum power from solar power. To make solar power generation reliable, a proper control technique must be added to the DC–DC power converter topologies. Furthermore, this study reviewed the progress of the maximum power point tracking algorithm and included an in-depth discussion on modern and both unidirectional and bidirectional DC–DC power converter topologies for harvesting electric power. Lastly, for the reliability and continuity of the power demand and to allow for distributed generation, this article also established the possibility of integrating solar PV systems into nanogrids and picogrids in a sustainable environment. The outcome of this comprehensive survey would be of strong interest to the researchers, technologists, and the industry in the relevant field to carry out future research.\",\"PeriodicalId\":22341,\"journal\":{\"name\":\"Technologies\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/technologies11040102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies11040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modern DC–DC Power Converter Topologies and Hybrid Control Strategies for Maximum Power Output in Sustainable Nanogrids and Picogrids—A Comprehensive Survey
Sustainable energy exhibited immense growth in the last few years. As compared to other sustainable sources, solar power is proved to be the most feasible source due to some unanticipated characteristics, such as being clean, noiseless, ecofriendly, etc. The output from the solar power is entirely unpredictable since solar power generation is dependent on the intensity of solar irradiation and solar panel temperature. Further, these parameters are weather dependent and thus intermittent in nature. To conquer intermittency, power converters play an important role in solar power generation. Generally, photovoltaic systems will eventually suffer from a decrease in energy conversion efficiency along with improper stability and intermittent properties. As a result, the maximum power point tracking (MPPT) algorithm must be incorporated to cultivate maximum power from solar power. To make solar power generation reliable, a proper control technique must be added to the DC–DC power converter topologies. Furthermore, this study reviewed the progress of the maximum power point tracking algorithm and included an in-depth discussion on modern and both unidirectional and bidirectional DC–DC power converter topologies for harvesting electric power. Lastly, for the reliability and continuity of the power demand and to allow for distributed generation, this article also established the possibility of integrating solar PV systems into nanogrids and picogrids in a sustainable environment. The outcome of this comprehensive survey would be of strong interest to the researchers, technologists, and the industry in the relevant field to carry out future research.