基于内成分对齐的脑功能网络分析

Chuchu Ding, Jiafei Dai, J. Wang, Danqin Xing, Yiyi He, Jiaqin Wang, F. Hou
{"title":"基于内成分对齐的脑功能网络分析","authors":"Chuchu Ding, Jiafei Dai, J. Wang, Danqin Xing, Yiyi He, Jiaqin Wang, F. Hou","doi":"10.1109/CISP-BMEI.2017.8302212","DOIUrl":null,"url":null,"abstract":"The study of brain networks usually analyze the difference of the statistical data and topological structure between pathological with normal brain, or study the difference of complex networks in different physiological state. This paper presents an inner composition alignment algorithm (IOTA) to study the complexity and differences of the brain function network of different ages in beta rhythm, study the topological characteristics in younger and old by computing the characteristics through algorithm: the average path length, clustering coefficient, the average node degree and inner composition alignment algorithm coefficient.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"144 12 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of brain functional networks based on inner composition alignment\",\"authors\":\"Chuchu Ding, Jiafei Dai, J. Wang, Danqin Xing, Yiyi He, Jiaqin Wang, F. Hou\",\"doi\":\"10.1109/CISP-BMEI.2017.8302212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of brain networks usually analyze the difference of the statistical data and topological structure between pathological with normal brain, or study the difference of complex networks in different physiological state. This paper presents an inner composition alignment algorithm (IOTA) to study the complexity and differences of the brain function network of different ages in beta rhythm, study the topological characteristics in younger and old by computing the characteristics through algorithm: the average path length, clustering coefficient, the average node degree and inner composition alignment algorithm coefficient.\",\"PeriodicalId\":6474,\"journal\":{\"name\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"144 12 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2017.8302212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8302212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑网络的研究通常是分析病理脑与正常脑的统计数据和拓扑结构的差异,或研究不同生理状态下复杂网络的差异。本文提出了一种内部构成对齐算法(IOTA),研究不同年龄大脑功能网络在beta节奏中的复杂性和差异性,通过算法:平均路径长度、聚类系数、平均节点度和内部构成对齐算法系数,通过计算特征来研究年轻人和老年人的拓扑特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of brain functional networks based on inner composition alignment
The study of brain networks usually analyze the difference of the statistical data and topological structure between pathological with normal brain, or study the difference of complex networks in different physiological state. This paper presents an inner composition alignment algorithm (IOTA) to study the complexity and differences of the brain function network of different ages in beta rhythm, study the topological characteristics in younger and old by computing the characteristics through algorithm: the average path length, clustering coefficient, the average node degree and inner composition alignment algorithm coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信