K3型超kahler流形的辛自同构有限群

IF 0.1 Q4 MATHEMATICS
G. Hohn, G. Mason
{"title":"K3型超kahler流形的辛自同构有限群","authors":"G. Hohn, G. Mason","doi":"10.21915/bimas.2019204","DOIUrl":null,"url":null,"abstract":"We determine the possible finite groups $G$ of symplectic automorphisms of hyperkahler manifolds which are deformation equivalent to the second Hilbert scheme of a K3 surface. We prove that $G$ has such an action if, and only if, it is isomorphic to a subgroup of either the Mathieu group $M_{23}$ having at least four orbits in its natural permutation representation on $24$ elements, or one of two groups $3^{1+4}{:}2.2^2$ and $3^4{:}A_6$ associated to $\\mathcal{S}$-lattices in the Leech lattice. We describe in detail those $G$ which are maximal with respect to these properties, and (in most cases) we determine all deformation equivalence classes of such group actions. We also compare our results with the predictions of Mathieu Moonshine.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"86 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2014-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Finite groups of symplectic automorphisms of hyperkahler manifolds of type K3\",\"authors\":\"G. Hohn, G. Mason\",\"doi\":\"10.21915/bimas.2019204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine the possible finite groups $G$ of symplectic automorphisms of hyperkahler manifolds which are deformation equivalent to the second Hilbert scheme of a K3 surface. We prove that $G$ has such an action if, and only if, it is isomorphic to a subgroup of either the Mathieu group $M_{23}$ having at least four orbits in its natural permutation representation on $24$ elements, or one of two groups $3^{1+4}{:}2.2^2$ and $3^4{:}A_6$ associated to $\\\\mathcal{S}$-lattices in the Leech lattice. We describe in detail those $G$ which are maximal with respect to these properties, and (in most cases) we determine all deformation equivalence classes of such group actions. We also compare our results with the predictions of Mathieu Moonshine.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2014-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/bimas.2019204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2019204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

我们确定了变形等价于K3曲面的第二Hilbert格式的超kahler流形辛自同构的可能有限群$G$。我们证明$G$具有这样的作用当且仅当它同构于Mathieu群$M_{23}$在$24$元素上的自然排列表示中至少有四个轨道的子群,或与Leech格中$\mathcal{S}$-格相关的$3^{1+4}{:}2.2^2$和$3^4{:}A_6$中的一个群。我们详细描述了关于这些性质的最大的$G$,并且(在大多数情况下)我们确定了这些群作用的所有变形等价类。我们还将我们的结果与Mathieu Moonshine的预测进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite groups of symplectic automorphisms of hyperkahler manifolds of type K3
We determine the possible finite groups $G$ of symplectic automorphisms of hyperkahler manifolds which are deformation equivalent to the second Hilbert scheme of a K3 surface. We prove that $G$ has such an action if, and only if, it is isomorphic to a subgroup of either the Mathieu group $M_{23}$ having at least four orbits in its natural permutation representation on $24$ elements, or one of two groups $3^{1+4}{:}2.2^2$ and $3^4{:}A_6$ associated to $\mathcal{S}$-lattices in the Leech lattice. We describe in detail those $G$ which are maximal with respect to these properties, and (in most cases) we determine all deformation equivalence classes of such group actions. We also compare our results with the predictions of Mathieu Moonshine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信