{"title":"含时无关噪声热方程的中心极限定理:正则和粗糙情况","authors":"R. Balan, Wangjun Yuan","doi":"10.1142/s0219025722500291","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the asymptotic behaviour of the spatial integral of the solution to the parabolic Anderson model with time independent noise in dimension d ≥ 1, as the domain of the integral becomes large. We consider 3 cases: (a) the case when the noise has an integrable covariance function; (b) the case when the covariance of the noise is given by the Riesz kernel; (c) the case of the rough noise, i.e. fractional noise with index H ∈ ( 14 , 12 ) in dimension d = 1. In each case, we identify the order of magnitude of the variance of the spatial integral, we prove a quantitative central limit theorem for the normalized spatial integral by estimating its total variation distance to a standard normal distribution, and we give the corresponding functional limit result.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Central limit theorems for heat equation with time-independent noise: the regular and rough cases\",\"authors\":\"R. Balan, Wangjun Yuan\",\"doi\":\"10.1142/s0219025722500291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate the asymptotic behaviour of the spatial integral of the solution to the parabolic Anderson model with time independent noise in dimension d ≥ 1, as the domain of the integral becomes large. We consider 3 cases: (a) the case when the noise has an integrable covariance function; (b) the case when the covariance of the noise is given by the Riesz kernel; (c) the case of the rough noise, i.e. fractional noise with index H ∈ ( 14 , 12 ) in dimension d = 1. In each case, we identify the order of magnitude of the variance of the spatial integral, we prove a quantitative central limit theorem for the normalized spatial integral by estimating its total variation distance to a standard normal distribution, and we give the corresponding functional limit result.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025722500291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025722500291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Central limit theorems for heat equation with time-independent noise: the regular and rough cases
In this article, we investigate the asymptotic behaviour of the spatial integral of the solution to the parabolic Anderson model with time independent noise in dimension d ≥ 1, as the domain of the integral becomes large. We consider 3 cases: (a) the case when the noise has an integrable covariance function; (b) the case when the covariance of the noise is given by the Riesz kernel; (c) the case of the rough noise, i.e. fractional noise with index H ∈ ( 14 , 12 ) in dimension d = 1. In each case, we identify the order of magnitude of the variance of the spatial integral, we prove a quantitative central limit theorem for the normalized spatial integral by estimating its total variation distance to a standard normal distribution, and we give the corresponding functional limit result.