含时无关噪声热方程的中心极限定理:正则和粗糙情况

Pub Date : 2022-05-26 DOI:10.1142/s0219025722500291
R. Balan, Wangjun Yuan
{"title":"含时无关噪声热方程的中心极限定理:正则和粗糙情况","authors":"R. Balan, Wangjun Yuan","doi":"10.1142/s0219025722500291","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the asymptotic behaviour of the spatial integral of the solution to the parabolic Anderson model with time independent noise in dimension d ≥ 1, as the domain of the integral becomes large. We consider 3 cases: (a) the case when the noise has an integrable covariance function; (b) the case when the covariance of the noise is given by the Riesz kernel; (c) the case of the rough noise, i.e. fractional noise with index H ∈ ( 14 , 12 ) in dimension d = 1. In each case, we identify the order of magnitude of the variance of the spatial integral, we prove a quantitative central limit theorem for the normalized spatial integral by estimating its total variation distance to a standard normal distribution, and we give the corresponding functional limit result.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Central limit theorems for heat equation with time-independent noise: the regular and rough cases\",\"authors\":\"R. Balan, Wangjun Yuan\",\"doi\":\"10.1142/s0219025722500291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate the asymptotic behaviour of the spatial integral of the solution to the parabolic Anderson model with time independent noise in dimension d ≥ 1, as the domain of the integral becomes large. We consider 3 cases: (a) the case when the noise has an integrable covariance function; (b) the case when the covariance of the noise is given by the Riesz kernel; (c) the case of the rough noise, i.e. fractional noise with index H ∈ ( 14 , 12 ) in dimension d = 1. In each case, we identify the order of magnitude of the variance of the spatial integral, we prove a quantitative central limit theorem for the normalized spatial integral by estimating its total variation distance to a standard normal distribution, and we give the corresponding functional limit result.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025722500291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025722500291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们研究了d≥1维具有时间无关噪声的抛物型Anderson模型解的空间积分随着积分域变大时的渐近行为。我们考虑了3种情况:(a)噪声具有可积协方差函数的情况;(b)噪声的协方差由Riesz核给出的情况;(c)粗糙噪声的情况,即d = 1维的指数H∈(14,12)的分数噪声。在每种情况下,我们确定了空间积分方差的数量级,通过估计其到标准正态分布的总变异距离证明了归一化空间积分的定量中心极限定理,并给出了相应的函数极限结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Central limit theorems for heat equation with time-independent noise: the regular and rough cases
In this article, we investigate the asymptotic behaviour of the spatial integral of the solution to the parabolic Anderson model with time independent noise in dimension d ≥ 1, as the domain of the integral becomes large. We consider 3 cases: (a) the case when the noise has an integrable covariance function; (b) the case when the covariance of the noise is given by the Riesz kernel; (c) the case of the rough noise, i.e. fractional noise with index H ∈ ( 14 , 12 ) in dimension d = 1. In each case, we identify the order of magnitude of the variance of the spatial integral, we prove a quantitative central limit theorem for the normalized spatial integral by estimating its total variation distance to a standard normal distribution, and we give the corresponding functional limit result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信