广义Yule模型的研究

IF 0.7 Q3 STATISTICS & PROBABILITY
F. Polito
{"title":"广义Yule模型的研究","authors":"F. Polito","doi":"10.15559/18-VMSTA125","DOIUrl":null,"url":null,"abstract":"We present a generalization of the Yule model for macroevolution in which, for the appearance of genera, we consider point processes with the $OS$ property, while for the growth of species we use nonlinear time-fractional pure birth processes. Further, in two specific cases we derive the explicit form of the distribution of the number of species of a genus chosen uniformly at random for each time $t$. Besides, we introduce a time-changed mixed Poisson process with the same marginal distribution as that of the time-fractional Poisson process.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"190 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Studies on generalized Yule models\",\"authors\":\"F. Polito\",\"doi\":\"10.15559/18-VMSTA125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a generalization of the Yule model for macroevolution in which, for the appearance of genera, we consider point processes with the $OS$ property, while for the growth of species we use nonlinear time-fractional pure birth processes. Further, in two specific cases we derive the explicit form of the distribution of the number of species of a genus chosen uniformly at random for each time $t$. Besides, we introduce a time-changed mixed Poisson process with the same marginal distribution as that of the time-fractional Poisson process.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/18-VMSTA125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/18-VMSTA125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

本文对Yule模型进行了推广,其中,对于属的出现,我们考虑具有$OS$性质的点过程,而对于种的生长,我们使用非线性时间分数纯出生过程。此外,在两个特定的情况下,我们导出了每次时间$t$时均匀随机选择的属的种数分布的显式形式。此外,我们还引入了与时间分数泊松过程具有相同边际分布的时变混合泊松过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studies on generalized Yule models
We present a generalization of the Yule model for macroevolution in which, for the appearance of genera, we consider point processes with the $OS$ property, while for the growth of species we use nonlinear time-fractional pure birth processes. Further, in two specific cases we derive the explicit form of the distribution of the number of species of a genus chosen uniformly at random for each time $t$. Besides, we introduce a time-changed mixed Poisson process with the same marginal distribution as that of the time-fractional Poisson process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信