{"title":"哦!这个代码片段是从哪里来的?","authors":"Lisong Guo, J. Lawall, Gilles Muller","doi":"10.1145/2597073.2597094","DOIUrl":null,"url":null,"abstract":"A kernel oops is an error report that logs the status of the Linux kernel at the time of a crash. Such a report can provide valuable first-hand information for a Linux kernel maintainer to conduct postmortem debugging. Recently, a repository has been created that systematically collects kernel oopses from Linux users. However, debugging based on only the information in a kernel oops is difficult. We consider the initial problem of finding the offending line, i.e., the line of source code that incurs the crash. For this, we propose a novel algorithm based on approximate sequence matching, as used in bioinformatics, to automatically pinpoint the offending line based on information about nearby machine-code instructions, as found in a kernel oops. Our algorithm achieves 92% accuracy compared to 26% for the traditional approach of using only the oops instruction pointer.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"46 1","pages":"52-61"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Oops! where did that code snippet come from?\",\"authors\":\"Lisong Guo, J. Lawall, Gilles Muller\",\"doi\":\"10.1145/2597073.2597094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A kernel oops is an error report that logs the status of the Linux kernel at the time of a crash. Such a report can provide valuable first-hand information for a Linux kernel maintainer to conduct postmortem debugging. Recently, a repository has been created that systematically collects kernel oopses from Linux users. However, debugging based on only the information in a kernel oops is difficult. We consider the initial problem of finding the offending line, i.e., the line of source code that incurs the crash. For this, we propose a novel algorithm based on approximate sequence matching, as used in bioinformatics, to automatically pinpoint the offending line based on information about nearby machine-code instructions, as found in a kernel oops. Our algorithm achieves 92% accuracy compared to 26% for the traditional approach of using only the oops instruction pointer.\",\"PeriodicalId\":6621,\"journal\":{\"name\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"volume\":\"46 1\",\"pages\":\"52-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2597073.2597094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2597073.2597094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A kernel oops is an error report that logs the status of the Linux kernel at the time of a crash. Such a report can provide valuable first-hand information for a Linux kernel maintainer to conduct postmortem debugging. Recently, a repository has been created that systematically collects kernel oopses from Linux users. However, debugging based on only the information in a kernel oops is difficult. We consider the initial problem of finding the offending line, i.e., the line of source code that incurs the crash. For this, we propose a novel algorithm based on approximate sequence matching, as used in bioinformatics, to automatically pinpoint the offending line based on information about nearby machine-code instructions, as found in a kernel oops. Our algorithm achieves 92% accuracy compared to 26% for the traditional approach of using only the oops instruction pointer.