{"title":"多牵引动态弗里德曼瓮与相反的加强","authors":"Shuyang Gao, Rafik Aguech","doi":"10.1017/s0269964822000535","DOIUrl":null,"url":null,"abstract":"\n In this study, we consider a class of multiple-drawing opposite-reinforcing urns with time-dependent replacement rules. The class has the symmetric property of a Friedman-type urn. We divide the class into a small-increment regime and a large-increment regime. For small-increment schemes, we prove almost-sure convergence and a central limit theorem for the proportion of white balls by stochastic approximation. For large-increment schemes, by assuming the affinity condition, we show almost-sure convergence of the proportion of white balls by martingale theory and present a way to identify the limit distribution of the proportion of white balls.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple-drawing dynamic Friedman urns with opposite-reinforcement\",\"authors\":\"Shuyang Gao, Rafik Aguech\",\"doi\":\"10.1017/s0269964822000535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, we consider a class of multiple-drawing opposite-reinforcing urns with time-dependent replacement rules. The class has the symmetric property of a Friedman-type urn. We divide the class into a small-increment regime and a large-increment regime. For small-increment schemes, we prove almost-sure convergence and a central limit theorem for the proportion of white balls by stochastic approximation. For large-increment schemes, by assuming the affinity condition, we show almost-sure convergence of the proportion of white balls by martingale theory and present a way to identify the limit distribution of the proportion of white balls.\",\"PeriodicalId\":54582,\"journal\":{\"name\":\"Probability in the Engineering and Informational Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability in the Engineering and Informational Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/s0269964822000535\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0269964822000535","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Multiple-drawing dynamic Friedman urns with opposite-reinforcement
In this study, we consider a class of multiple-drawing opposite-reinforcing urns with time-dependent replacement rules. The class has the symmetric property of a Friedman-type urn. We divide the class into a small-increment regime and a large-increment regime. For small-increment schemes, we prove almost-sure convergence and a central limit theorem for the proportion of white balls by stochastic approximation. For large-increment schemes, by assuming the affinity condition, we show almost-sure convergence of the proportion of white balls by martingale theory and present a way to identify the limit distribution of the proportion of white balls.
期刊介绍:
The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.