分支:卷积神经网络在线集成跟踪的正则化

Bohyung Han, Jack Sim, Hartwig Adam
{"title":"分支:卷积神经网络在线集成跟踪的正则化","authors":"Bohyung Han, Jack Sim, Hartwig Adam","doi":"10.1109/CVPR.2017.63","DOIUrl":null,"url":null,"abstract":"We propose an extremely simple but effective regularization technique of convolutional neural networks (CNNs), referred to as BranchOut, for online ensemble tracking. Our algorithm employs a CNN for target representation, which has a common convolutional layers but has multiple branches of fully connected layers. For better regularization, a subset of branches in the CNN are selected randomly for online learning whenever target appearance models need to be updated. Each branch may have a different number of layers to maintain variable abstraction levels of target appearances. BranchOut with multi-level target representation allows us to learn robust target appearance models with diversity and handle various challenges in visual tracking problem effectively. The proposed algorithm is evaluated in standard tracking benchmarks and shows the state-of-the-art performance even without additional pretraining on external tracking sequences.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"189 1","pages":"521-530"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"144","resultStr":"{\"title\":\"BranchOut: Regularization for Online Ensemble Tracking with Convolutional Neural Networks\",\"authors\":\"Bohyung Han, Jack Sim, Hartwig Adam\",\"doi\":\"10.1109/CVPR.2017.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an extremely simple but effective regularization technique of convolutional neural networks (CNNs), referred to as BranchOut, for online ensemble tracking. Our algorithm employs a CNN for target representation, which has a common convolutional layers but has multiple branches of fully connected layers. For better regularization, a subset of branches in the CNN are selected randomly for online learning whenever target appearance models need to be updated. Each branch may have a different number of layers to maintain variable abstraction levels of target appearances. BranchOut with multi-level target representation allows us to learn robust target appearance models with diversity and handle various challenges in visual tracking problem effectively. The proposed algorithm is evaluated in standard tracking benchmarks and shows the state-of-the-art performance even without additional pretraining on external tracking sequences.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"189 1\",\"pages\":\"521-530\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"144\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 144

摘要

我们提出了一种非常简单但有效的卷积神经网络(cnn)正则化技术,称为BranchOut,用于在线集成跟踪。我们的算法采用CNN进行目标表示,该算法具有常见的卷积层,但具有完全连接层的多个分支。为了更好的正则化,在需要更新目标外观模型时,随机选择CNN中的分支子集进行在线学习。每个分支可能有不同数量的层来维护目标外观的可变抽象级别。基于多层次目标表示的BranchOut算法使我们能够学习具有多样性的鲁棒目标外观模型,有效地解决了视觉跟踪问题中的各种挑战。该算法在标准跟踪基准中进行了评估,即使没有对外部跟踪序列进行额外的预训练,也显示出最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BranchOut: Regularization for Online Ensemble Tracking with Convolutional Neural Networks
We propose an extremely simple but effective regularization technique of convolutional neural networks (CNNs), referred to as BranchOut, for online ensemble tracking. Our algorithm employs a CNN for target representation, which has a common convolutional layers but has multiple branches of fully connected layers. For better regularization, a subset of branches in the CNN are selected randomly for online learning whenever target appearance models need to be updated. Each branch may have a different number of layers to maintain variable abstraction levels of target appearances. BranchOut with multi-level target representation allows us to learn robust target appearance models with diversity and handle various challenges in visual tracking problem effectively. The proposed algorithm is evaluated in standard tracking benchmarks and shows the state-of-the-art performance even without additional pretraining on external tracking sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信