{"title":"热带地区疟疾-弓形虫共感染动力学的数学建模","authors":"O. Ogunmiloro","doi":"10.2478/bile-2019-0013","DOIUrl":null,"url":null,"abstract":"Summary Coinfection by Plasmodium species and Toxoplasma gondii in humans is widespread, with its endemic impact mostly felt in the tropics. A mathematical model is formulated as a first-order nonlinear system of ordinary differential equations to describe the coinfection dynamics of malaria-toxoplasmosis in the mainly human and feline susceptible host population in tropical regions. Comprehensive mathematical techniques are applied to show that the model system is bounded, positive and realistic in an epidemiological sense. Also, the basic reproduction number (Romt) of the coinfection model is obtained. It is shown that if Romt < 1, the model system at its malaria-toxoplasmosis absent equilibrium is both locally and globally asymptotically stable. The impact of toxoplasmosis and its treatment on malaria, and vice versa, is studied and analyzed. Sensitivity analysis was performed to investigate the impact of the model system parameters on the reproduction number of the transmission of malaria-toxoplasmosis coinfection. Simulations and graphical illustrations were made to validate the results obtained from the theoretical model.","PeriodicalId":8933,"journal":{"name":"Biometrical Letters","volume":"6 1","pages":"139 - 163"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Mathematical Modeling of the Coinfection Dynamics of Malaria-Toxoplasmosis in the Tropics\",\"authors\":\"O. Ogunmiloro\",\"doi\":\"10.2478/bile-2019-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Coinfection by Plasmodium species and Toxoplasma gondii in humans is widespread, with its endemic impact mostly felt in the tropics. A mathematical model is formulated as a first-order nonlinear system of ordinary differential equations to describe the coinfection dynamics of malaria-toxoplasmosis in the mainly human and feline susceptible host population in tropical regions. Comprehensive mathematical techniques are applied to show that the model system is bounded, positive and realistic in an epidemiological sense. Also, the basic reproduction number (Romt) of the coinfection model is obtained. It is shown that if Romt < 1, the model system at its malaria-toxoplasmosis absent equilibrium is both locally and globally asymptotically stable. The impact of toxoplasmosis and its treatment on malaria, and vice versa, is studied and analyzed. Sensitivity analysis was performed to investigate the impact of the model system parameters on the reproduction number of the transmission of malaria-toxoplasmosis coinfection. Simulations and graphical illustrations were made to validate the results obtained from the theoretical model.\",\"PeriodicalId\":8933,\"journal\":{\"name\":\"Biometrical Letters\",\"volume\":\"6 1\",\"pages\":\"139 - 163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/bile-2019-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bile-2019-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mathematical Modeling of the Coinfection Dynamics of Malaria-Toxoplasmosis in the Tropics
Summary Coinfection by Plasmodium species and Toxoplasma gondii in humans is widespread, with its endemic impact mostly felt in the tropics. A mathematical model is formulated as a first-order nonlinear system of ordinary differential equations to describe the coinfection dynamics of malaria-toxoplasmosis in the mainly human and feline susceptible host population in tropical regions. Comprehensive mathematical techniques are applied to show that the model system is bounded, positive and realistic in an epidemiological sense. Also, the basic reproduction number (Romt) of the coinfection model is obtained. It is shown that if Romt < 1, the model system at its malaria-toxoplasmosis absent equilibrium is both locally and globally asymptotically stable. The impact of toxoplasmosis and its treatment on malaria, and vice versa, is studied and analyzed. Sensitivity analysis was performed to investigate the impact of the model system parameters on the reproduction number of the transmission of malaria-toxoplasmosis coinfection. Simulations and graphical illustrations were made to validate the results obtained from the theoretical model.