热带地区疟疾-弓形虫共感染动力学的数学建模

O. Ogunmiloro
{"title":"热带地区疟疾-弓形虫共感染动力学的数学建模","authors":"O. Ogunmiloro","doi":"10.2478/bile-2019-0013","DOIUrl":null,"url":null,"abstract":"Summary Coinfection by Plasmodium species and Toxoplasma gondii in humans is widespread, with its endemic impact mostly felt in the tropics. A mathematical model is formulated as a first-order nonlinear system of ordinary differential equations to describe the coinfection dynamics of malaria-toxoplasmosis in the mainly human and feline susceptible host population in tropical regions. Comprehensive mathematical techniques are applied to show that the model system is bounded, positive and realistic in an epidemiological sense. Also, the basic reproduction number (Romt) of the coinfection model is obtained. It is shown that if Romt < 1, the model system at its malaria-toxoplasmosis absent equilibrium is both locally and globally asymptotically stable. The impact of toxoplasmosis and its treatment on malaria, and vice versa, is studied and analyzed. Sensitivity analysis was performed to investigate the impact of the model system parameters on the reproduction number of the transmission of malaria-toxoplasmosis coinfection. Simulations and graphical illustrations were made to validate the results obtained from the theoretical model.","PeriodicalId":8933,"journal":{"name":"Biometrical Letters","volume":"6 1","pages":"139 - 163"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Mathematical Modeling of the Coinfection Dynamics of Malaria-Toxoplasmosis in the Tropics\",\"authors\":\"O. Ogunmiloro\",\"doi\":\"10.2478/bile-2019-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Coinfection by Plasmodium species and Toxoplasma gondii in humans is widespread, with its endemic impact mostly felt in the tropics. A mathematical model is formulated as a first-order nonlinear system of ordinary differential equations to describe the coinfection dynamics of malaria-toxoplasmosis in the mainly human and feline susceptible host population in tropical regions. Comprehensive mathematical techniques are applied to show that the model system is bounded, positive and realistic in an epidemiological sense. Also, the basic reproduction number (Romt) of the coinfection model is obtained. It is shown that if Romt < 1, the model system at its malaria-toxoplasmosis absent equilibrium is both locally and globally asymptotically stable. The impact of toxoplasmosis and its treatment on malaria, and vice versa, is studied and analyzed. Sensitivity analysis was performed to investigate the impact of the model system parameters on the reproduction number of the transmission of malaria-toxoplasmosis coinfection. Simulations and graphical illustrations were made to validate the results obtained from the theoretical model.\",\"PeriodicalId\":8933,\"journal\":{\"name\":\"Biometrical Letters\",\"volume\":\"6 1\",\"pages\":\"139 - 163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/bile-2019-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bile-2019-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

疟原虫和刚地弓形虫在人类中的共同感染很普遍,其地方性影响主要在热带地区感受到。用一阶非线性常微分方程组的数学模型描述了热带地区主要是人类和猫易感宿主群体中疟疾-弓形虫病的共感染动力学。综合数学技术的应用表明,在流行病学的意义上,模型系统是有界的,积极的和现实的。得到了共感染模型的基本繁殖数(Romt)。结果表明,当Romt < 1时,模型系统在疟疾-弓形虫病无平衡状态下是局部和全局渐近稳定的。研究和分析了弓形虫病及其治疗对疟疾的影响,反之亦然。进行敏感性分析,探讨模型系统参数对疟疾-弓形虫共感染传播繁殖数的影响。通过仿真和图形说明验证了理论模型得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Modeling of the Coinfection Dynamics of Malaria-Toxoplasmosis in the Tropics
Summary Coinfection by Plasmodium species and Toxoplasma gondii in humans is widespread, with its endemic impact mostly felt in the tropics. A mathematical model is formulated as a first-order nonlinear system of ordinary differential equations to describe the coinfection dynamics of malaria-toxoplasmosis in the mainly human and feline susceptible host population in tropical regions. Comprehensive mathematical techniques are applied to show that the model system is bounded, positive and realistic in an epidemiological sense. Also, the basic reproduction number (Romt) of the coinfection model is obtained. It is shown that if Romt < 1, the model system at its malaria-toxoplasmosis absent equilibrium is both locally and globally asymptotically stable. The impact of toxoplasmosis and its treatment on malaria, and vice versa, is studied and analyzed. Sensitivity analysis was performed to investigate the impact of the model system parameters on the reproduction number of the transmission of malaria-toxoplasmosis coinfection. Simulations and graphical illustrations were made to validate the results obtained from the theoretical model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信