通过稀疏化和量化后验概率改进蕨类植物集合

Antonio L. Rodríguez, V. Sequeira
{"title":"通过稀疏化和量化后验概率改进蕨类植物集合","authors":"Antonio L. Rodríguez, V. Sequeira","doi":"10.1109/ICCV.2015.467","DOIUrl":null,"url":null,"abstract":"Ferns ensembles offer an accurate and efficient multiclass non-linear classification, commonly at the expense of consuming a large amount of memory. We introduce a two-fold contribution that produces large reductions in their memory consumption. First, an efficient L0 regularised cost optimisation finds a sparse representation of the posterior probabilities in the ensemble by discarding elements with zero contribution to valid responses in the training samples. As a by-product this can produce a prediction accuracy gain that, if required, can be traded for further reductions in memory size and prediction time. Secondly, posterior probabilities are quantised and stored in a memory-friendly sparse data structure. We reported a minimum of 75% memory reduction for different types of classification problems using generative and discriminative ferns ensembles, without increasing prediction time or classification error. For image patch recognition our proposal produced a 90% memory reduction, and improved in several percentage points the prediction accuracy.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"188 1","pages":"4103-4111"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Ferns Ensembles by Sparsifying and Quantising Posterior Probabilities\",\"authors\":\"Antonio L. Rodríguez, V. Sequeira\",\"doi\":\"10.1109/ICCV.2015.467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferns ensembles offer an accurate and efficient multiclass non-linear classification, commonly at the expense of consuming a large amount of memory. We introduce a two-fold contribution that produces large reductions in their memory consumption. First, an efficient L0 regularised cost optimisation finds a sparse representation of the posterior probabilities in the ensemble by discarding elements with zero contribution to valid responses in the training samples. As a by-product this can produce a prediction accuracy gain that, if required, can be traded for further reductions in memory size and prediction time. Secondly, posterior probabilities are quantised and stored in a memory-friendly sparse data structure. We reported a minimum of 75% memory reduction for different types of classification problems using generative and discriminative ferns ensembles, without increasing prediction time or classification error. For image patch recognition our proposal produced a 90% memory reduction, and improved in several percentage points the prediction accuracy.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"188 1\",\"pages\":\"4103-4111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蕨类集合提供了一个准确和有效的多类非线性分类,通常以消耗大量内存为代价。我们引入了双重贡献,从而大大降低了它们的内存消耗。首先,通过丢弃训练样本中对有效响应贡献为零的元素,高效的L0正则化成本优化找到集合中后验概率的稀疏表示。作为一个副产品,这可以产生预测精度的增益,如果需要,可以换取内存大小和预测时间的进一步减少。其次,将后验概率量化并存储在内存友好的稀疏数据结构中。我们报告了在不增加预测时间或分类误差的情况下,使用生成和判别蕨类植物集成对不同类型的分类问题至少减少75%的内存。对于图像补丁识别,我们的建议产生了90%的内存减少,并提高了几个百分点的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Ferns Ensembles by Sparsifying and Quantising Posterior Probabilities
Ferns ensembles offer an accurate and efficient multiclass non-linear classification, commonly at the expense of consuming a large amount of memory. We introduce a two-fold contribution that produces large reductions in their memory consumption. First, an efficient L0 regularised cost optimisation finds a sparse representation of the posterior probabilities in the ensemble by discarding elements with zero contribution to valid responses in the training samples. As a by-product this can produce a prediction accuracy gain that, if required, can be traded for further reductions in memory size and prediction time. Secondly, posterior probabilities are quantised and stored in a memory-friendly sparse data structure. We reported a minimum of 75% memory reduction for different types of classification problems using generative and discriminative ferns ensembles, without increasing prediction time or classification error. For image patch recognition our proposal produced a 90% memory reduction, and improved in several percentage points the prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信