{"title":"度条件下超图的独立数","authors":"V. Rödl, M. Sales, Yi Zhao","doi":"10.1002/rsa.21151","DOIUrl":null,"url":null,"abstract":"A well‐known result of Ajtai Komlós, Pintz, Spencer, and Szemerédi (J. Combin. Theory Ser. A 32 (1982), 321–335) states that every k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices, with girth at least five, and average degree tk−1$$ {t}^{k-1} $$ contains an independent set of size cn(logt)1/(k−1)/t$$ cn{\\left(\\log t\\right)}^{1/\\left(k-1\\right)}/t $$ for some c>0$$ c>0 $$ . In this paper we show that an independent set of the same size can be found under weaker conditions allowing certain cycles of length 2, 3, and 4. Our work is motivated by a problem of Lo and Zhao, who asked for k≥4$$ k\\ge 4 $$ , how large of an independent set a k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices necessarily has when its maximum (k−2)$$ \\left(k-2\\right) $$ ‐degree Δk−2(H)≤dn$$ {\\Delta}_{k-2}(H)\\le dn $$ . (The corresponding problem with respect to (k−1)$$ \\left(k-1\\right) $$ ‐degrees was solved by Kostochka, Mubayi, and Verstraëte (Random Struct. & Algorithms 44 (2014), 224–239).) In this paper we show that every k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices with Δk−2(H)≤dn$$ {\\Delta}_{k-2}(H)\\le dn $$ contains an independent set of size cndloglognd1/(k−1)$$ c{\\left(\\frac{n}{d}\\mathrm{loglog}\\frac{n}{d}\\right)}^{1/\\left(k-1\\right)} $$ , and under additional conditions, an independent set of size cndlognd1/(k−1)$$ c{\\left(\\frac{n}{d}\\log \\frac{n}{d}\\right)}^{1/\\left(k-1\\right)} $$ . The former assertion gives a new upper bound for the (k−2)$$ \\left(k-2\\right) $$ ‐degree Turán density of complete k$$ k $$ ‐graphs.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"6 1","pages":"821 - 863"},"PeriodicalIF":0.9000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Independence number of hypergraphs under degree conditions\",\"authors\":\"V. Rödl, M. Sales, Yi Zhao\",\"doi\":\"10.1002/rsa.21151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A well‐known result of Ajtai Komlós, Pintz, Spencer, and Szemerédi (J. Combin. Theory Ser. A 32 (1982), 321–335) states that every k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices, with girth at least five, and average degree tk−1$$ {t}^{k-1} $$ contains an independent set of size cn(logt)1/(k−1)/t$$ cn{\\\\left(\\\\log t\\\\right)}^{1/\\\\left(k-1\\\\right)}/t $$ for some c>0$$ c>0 $$ . In this paper we show that an independent set of the same size can be found under weaker conditions allowing certain cycles of length 2, 3, and 4. Our work is motivated by a problem of Lo and Zhao, who asked for k≥4$$ k\\\\ge 4 $$ , how large of an independent set a k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices necessarily has when its maximum (k−2)$$ \\\\left(k-2\\\\right) $$ ‐degree Δk−2(H)≤dn$$ {\\\\Delta}_{k-2}(H)\\\\le dn $$ . (The corresponding problem with respect to (k−1)$$ \\\\left(k-1\\\\right) $$ ‐degrees was solved by Kostochka, Mubayi, and Verstraëte (Random Struct. & Algorithms 44 (2014), 224–239).) In this paper we show that every k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices with Δk−2(H)≤dn$$ {\\\\Delta}_{k-2}(H)\\\\le dn $$ contains an independent set of size cndloglognd1/(k−1)$$ c{\\\\left(\\\\frac{n}{d}\\\\mathrm{loglog}\\\\frac{n}{d}\\\\right)}^{1/\\\\left(k-1\\\\right)} $$ , and under additional conditions, an independent set of size cndlognd1/(k−1)$$ c{\\\\left(\\\\frac{n}{d}\\\\log \\\\frac{n}{d}\\\\right)}^{1/\\\\left(k-1\\\\right)} $$ . The former assertion gives a new upper bound for the (k−2)$$ \\\\left(k-2\\\\right) $$ ‐degree Turán density of complete k$$ k $$ ‐graphs.\",\"PeriodicalId\":54523,\"journal\":{\"name\":\"Random Structures & Algorithms\",\"volume\":\"6 1\",\"pages\":\"821 - 863\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures & Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21151\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21151","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
Ajtai Komlós、Pintz、Spencer和szemersamudi (J. Combin)的一个众所周知的结果。理论SerA 32(1982), 321-335)指出,每个k $$ k $$‐图H $$ H $$在n个$$ n $$顶点上,周长至少为5,平均度为tk−1 $$ {t}^{k-1} $$包含一个大小为cn(logt)1/(k−1)/t $$ cn{\left(\log t\right)}^{1/\left(k-1\right)}/t $$的独立集合,对于某些c>0 $$ c>0 $$。在本文中,我们证明了在允许长度为2,3和4的某些循环的较弱条件下,可以找到相同大小的独立集。我们的工作受到Lo和Zhao的一个问题的启发,他们要求k≥4 $$ k\ge 4 $$,当k $$ k $$‐图H $$ H $$的最大值(k−2)$$ \left(k-2\right) $$‐度Δk−2(H)≤dn $$ {\Delta}_{k-2}(H)\le dn $$时,n个$$ n $$顶点上的k ‐图H 的独立集有多大。(关于(k−1)$$ \left(k-1\right) $$‐degrees的相应问题由Kostochka, Mubayi和Verstraëte (Random Struct)解决。&算法44(2014),224-239)。在本文中,我们证明了在Δk−2(H)≤dn $$ {\Delta}_{k-2}(H)\le dn $$的n个$$ n $$顶点上的每k $$ k $$‐图H $$ H $$包含一个大小为cndloggnd1 /(k−1)$$ c{\left(\frac{n}{d}\mathrm{loglog}\frac{n}{d}\right)}^{1/\left(k-1\right)} $$的独立集,并且在附加条件下,包含一个大小为cndloggnd1 /(k−1)$$ c{\left(\frac{n}{d}\log \frac{n}{d}\right)}^{1/\left(k-1\right)} $$的独立集。前一个断言给出了完全k $$ k $$‐图的(k−2)$$ \left(k-2\right) $$‐度Turán密度的一个新的上界。
Independence number of hypergraphs under degree conditions
A well‐known result of Ajtai Komlós, Pintz, Spencer, and Szemerédi (J. Combin. Theory Ser. A 32 (1982), 321–335) states that every k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices, with girth at least five, and average degree tk−1$$ {t}^{k-1} $$ contains an independent set of size cn(logt)1/(k−1)/t$$ cn{\left(\log t\right)}^{1/\left(k-1\right)}/t $$ for some c>0$$ c>0 $$ . In this paper we show that an independent set of the same size can be found under weaker conditions allowing certain cycles of length 2, 3, and 4. Our work is motivated by a problem of Lo and Zhao, who asked for k≥4$$ k\ge 4 $$ , how large of an independent set a k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices necessarily has when its maximum (k−2)$$ \left(k-2\right) $$ ‐degree Δk−2(H)≤dn$$ {\Delta}_{k-2}(H)\le dn $$ . (The corresponding problem with respect to (k−1)$$ \left(k-1\right) $$ ‐degrees was solved by Kostochka, Mubayi, and Verstraëte (Random Struct. & Algorithms 44 (2014), 224–239).) In this paper we show that every k$$ k $$ ‐graph H$$ H $$ on n$$ n $$ vertices with Δk−2(H)≤dn$$ {\Delta}_{k-2}(H)\le dn $$ contains an independent set of size cndloglognd1/(k−1)$$ c{\left(\frac{n}{d}\mathrm{loglog}\frac{n}{d}\right)}^{1/\left(k-1\right)} $$ , and under additional conditions, an independent set of size cndlognd1/(k−1)$$ c{\left(\frac{n}{d}\log \frac{n}{d}\right)}^{1/\left(k-1\right)} $$ . The former assertion gives a new upper bound for the (k−2)$$ \left(k-2\right) $$ ‐degree Turán density of complete k$$ k $$ ‐graphs.
期刊介绍:
It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness.
Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.