超铁电性背后的微观机制

M. Khedidji, D. Amoroso, H. Djani
{"title":"超铁电性背后的微观机制","authors":"M. Khedidji, D. Amoroso, H. Djani","doi":"10.1103/PHYSREVB.103.014116","DOIUrl":null,"url":null,"abstract":"Hyperferroelectrics are receiving a growing interest thanks to their unique property to retain a spontaneous polarization even in presence of a depolarizing field. Nevertheless, general microscopic mechanisms driving hyperferroelectricity, which is ascribed to the softening of a polar $LO$ mode, are still missing. Here, by means of phonons calculations and force constants analysis in two class of hyperferroelectrics, the ABO$_3$-LiNbO3-type systems and the prototypical hexagonal-ABC systems, we unveiled common features in the dynamical properties of a hyperferroelectric behind such $LO$ instability: negative or vanishing on-site force constant associated to the cation driving the $LO$ polar distortion, and destabilizing cation-anion interactions, both induced by short-range forces. We also predict possible enhancement of the hyperferroelectric properties by applying an external positive pressure; pressure strengthens the destabilizing short-range interactions. Particularly, the increase in the mode effective charges associated to the unstable $LO$ mode under pressure suggests an eventual enhancement of the $D$=0 polarization under compressive strain.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":"216 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Microscopic mechanisms behind hyperferroelectricity\",\"authors\":\"M. Khedidji, D. Amoroso, H. Djani\",\"doi\":\"10.1103/PHYSREVB.103.014116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperferroelectrics are receiving a growing interest thanks to their unique property to retain a spontaneous polarization even in presence of a depolarizing field. Nevertheless, general microscopic mechanisms driving hyperferroelectricity, which is ascribed to the softening of a polar $LO$ mode, are still missing. Here, by means of phonons calculations and force constants analysis in two class of hyperferroelectrics, the ABO$_3$-LiNbO3-type systems and the prototypical hexagonal-ABC systems, we unveiled common features in the dynamical properties of a hyperferroelectric behind such $LO$ instability: negative or vanishing on-site force constant associated to the cation driving the $LO$ polar distortion, and destabilizing cation-anion interactions, both induced by short-range forces. We also predict possible enhancement of the hyperferroelectric properties by applying an external positive pressure; pressure strengthens the destabilizing short-range interactions. Particularly, the increase in the mode effective charges associated to the unstable $LO$ mode under pressure suggests an eventual enhancement of the $D$=0 polarization under compressive strain.\",\"PeriodicalId\":8467,\"journal\":{\"name\":\"arXiv: Materials Science\",\"volume\":\"216 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVB.103.014116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.014116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

超铁电体由于其独特的性质,即使在去极化场的存在下也能保持自发极化,因此受到越来越多的关注。然而,驱动超铁电性的一般微观机制(归因于极性$LO$模式的软化)仍然缺失。本文通过对两类超铁电体(ABO$_3$- linbo3型体系和典型六边形- abc体系)的声子计算和力常数分析,揭示了这种超铁电体不稳定性背后的动力学特性的共同特征:与驱动$LO$极性畸变的阳离子相关的负或消失的现场力常数,以及不稳定的阳离子-阴离子相互作用,都是由短程力引起的。我们还预测了施加外部正压可能增强超铁电性能;压力加强了破坏稳定的短程相互作用。特别是,与压力下不稳定的$LO$模式相关的模式有效电荷的增加表明,在压缩应变下,$D$=0极化最终会增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microscopic mechanisms behind hyperferroelectricity
Hyperferroelectrics are receiving a growing interest thanks to their unique property to retain a spontaneous polarization even in presence of a depolarizing field. Nevertheless, general microscopic mechanisms driving hyperferroelectricity, which is ascribed to the softening of a polar $LO$ mode, are still missing. Here, by means of phonons calculations and force constants analysis in two class of hyperferroelectrics, the ABO$_3$-LiNbO3-type systems and the prototypical hexagonal-ABC systems, we unveiled common features in the dynamical properties of a hyperferroelectric behind such $LO$ instability: negative or vanishing on-site force constant associated to the cation driving the $LO$ polar distortion, and destabilizing cation-anion interactions, both induced by short-range forces. We also predict possible enhancement of the hyperferroelectric properties by applying an external positive pressure; pressure strengthens the destabilizing short-range interactions. Particularly, the increase in the mode effective charges associated to the unstable $LO$ mode under pressure suggests an eventual enhancement of the $D$=0 polarization under compressive strain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信