{"title":"基于0.13μm CMOS的14位0.17mm2 SAR ADC,用于高精度神经记录","authors":"A. Nguyen, Jian Xu, Zhi Yang","doi":"10.1109/CICC.2015.7338460","DOIUrl":null,"url":null,"abstract":"This paper presents a high-resolution, area- and power-efficient successive approximate register (SAR) analog-to-digital converter (ADC) for high precision nerve recording. The design features a new “half-split” feedback digital-to-analog converter (DAC) capacitor array with integrated digital calibrations, which allow automatic estimation and calibration of capacitor mismatches. As a result, the SAR ADC precision can be substantially improved given the constraints on circuits area and power consumption. The design has been fabricated in a 0.13μm CMOS process with a core area of 0.17mm2 (280μm×620μm). When measured at 40kSample/s, the ADC consumes 10μW of power and achieves a 72.7dB signal-to-noise-plus-distortion ratio (SNDR) and a 92.1dB spurious free dynamic range (SFDR) over the Nyquist bandwidth. Compared with the noncalibrated ADC, the proposed methods provide the improvements on SNDR, SFDR, and nonlinearity by 12.6dB, 22.7dB, and 4-6 times, respectively.","PeriodicalId":6665,"journal":{"name":"2015 IEEE Custom Integrated Circuits Conference (CICC)","volume":"45 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A 14-bit 0.17mm2 SAR ADC in 0.13μm CMOS for high precision nerve recording\",\"authors\":\"A. Nguyen, Jian Xu, Zhi Yang\",\"doi\":\"10.1109/CICC.2015.7338460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high-resolution, area- and power-efficient successive approximate register (SAR) analog-to-digital converter (ADC) for high precision nerve recording. The design features a new “half-split” feedback digital-to-analog converter (DAC) capacitor array with integrated digital calibrations, which allow automatic estimation and calibration of capacitor mismatches. As a result, the SAR ADC precision can be substantially improved given the constraints on circuits area and power consumption. The design has been fabricated in a 0.13μm CMOS process with a core area of 0.17mm2 (280μm×620μm). When measured at 40kSample/s, the ADC consumes 10μW of power and achieves a 72.7dB signal-to-noise-plus-distortion ratio (SNDR) and a 92.1dB spurious free dynamic range (SFDR) over the Nyquist bandwidth. Compared with the noncalibrated ADC, the proposed methods provide the improvements on SNDR, SFDR, and nonlinearity by 12.6dB, 22.7dB, and 4-6 times, respectively.\",\"PeriodicalId\":6665,\"journal\":{\"name\":\"2015 IEEE Custom Integrated Circuits Conference (CICC)\",\"volume\":\"45 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Custom Integrated Circuits Conference (CICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.2015.7338460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2015.7338460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 14-bit 0.17mm2 SAR ADC in 0.13μm CMOS for high precision nerve recording
This paper presents a high-resolution, area- and power-efficient successive approximate register (SAR) analog-to-digital converter (ADC) for high precision nerve recording. The design features a new “half-split” feedback digital-to-analog converter (DAC) capacitor array with integrated digital calibrations, which allow automatic estimation and calibration of capacitor mismatches. As a result, the SAR ADC precision can be substantially improved given the constraints on circuits area and power consumption. The design has been fabricated in a 0.13μm CMOS process with a core area of 0.17mm2 (280μm×620μm). When measured at 40kSample/s, the ADC consumes 10μW of power and achieves a 72.7dB signal-to-noise-plus-distortion ratio (SNDR) and a 92.1dB spurious free dynamic range (SFDR) over the Nyquist bandwidth. Compared with the noncalibrated ADC, the proposed methods provide the improvements on SNDR, SFDR, and nonlinearity by 12.6dB, 22.7dB, and 4-6 times, respectively.