黑洞具有固有的标量曲率

P. Morley
{"title":"黑洞具有固有的标量曲率","authors":"P. Morley","doi":"10.1142/s2424942423500019","DOIUrl":null,"url":null,"abstract":"The scalar curvature [Formula: see text] is invariant under isometric symmetries (distance invariance) associated with metric spaces. Gravitational Riemannian manifolds are metric spaces. For Minkowski Space, the distance invariant is [Formula: see text], where [Formula: see text], [Formula: see text] are arbitrary 4-vectors. Thus the isometry symmetry associated with Minkowski Space is the Poincaré Group. The Standard Model Lagrangian density [Formula: see text] is also invariant under the Poincaré Group, so for Minkowski Space, the scalar curvature and the Standard Model Lagrangian density are proportional to each other. We show that this proportionality extends to general gravitational Riemannian manifolds, not just for Minkowski Space. This predicts that Black Holes have non-zero scalar curvatures [Formula: see text]. For Schwarzschild Black Holes, [Formula: see text] is predicted to be [Formula: see text], where [Formula: see text] is the Schwarzschild radius. The existence of [Formula: see text] means that Black Holes cannot evaporate.","PeriodicalId":52944,"journal":{"name":"Reports in Advances of Physical Sciences","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black Holes have Intrinsic Scalar Curvature\",\"authors\":\"P. Morley\",\"doi\":\"10.1142/s2424942423500019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scalar curvature [Formula: see text] is invariant under isometric symmetries (distance invariance) associated with metric spaces. Gravitational Riemannian manifolds are metric spaces. For Minkowski Space, the distance invariant is [Formula: see text], where [Formula: see text], [Formula: see text] are arbitrary 4-vectors. Thus the isometry symmetry associated with Minkowski Space is the Poincaré Group. The Standard Model Lagrangian density [Formula: see text] is also invariant under the Poincaré Group, so for Minkowski Space, the scalar curvature and the Standard Model Lagrangian density are proportional to each other. We show that this proportionality extends to general gravitational Riemannian manifolds, not just for Minkowski Space. This predicts that Black Holes have non-zero scalar curvatures [Formula: see text]. For Schwarzschild Black Holes, [Formula: see text] is predicted to be [Formula: see text], where [Formula: see text] is the Schwarzschild radius. The existence of [Formula: see text] means that Black Holes cannot evaporate.\",\"PeriodicalId\":52944,\"journal\":{\"name\":\"Reports in Advances of Physical Sciences\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports in Advances of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424942423500019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports in Advances of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424942423500019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

标量曲率[公式:见文本]在与度量空间相关的等距对称(距离不变性)下是不变的。引力黎曼流形是度量空间。对于Minkowski空间,距离不变量为[公式:见文],其中[公式:见文],[公式:见文]为任意4向量。因此,与闵可夫斯基空间相关的等距对称是庞卡洛伊群。标准模型拉格朗日密度[公式:见文]在庞加莱格群下也是不变的,所以对于闵可夫斯基空间,标量曲率和标准模型拉格朗日密度是成比例的。我们证明了这种比例性延伸到一般的引力黎曼流形,而不仅仅是闵可夫斯基空间。这预示着黑洞具有非零的标量曲率[公式:见原文]。对于史瓦西黑洞,[公式:见文]被预测为[公式:见文],其中[公式:见文]是史瓦西半径。[公式:见原文]的存在意味着黑洞不会蒸发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black Holes have Intrinsic Scalar Curvature
The scalar curvature [Formula: see text] is invariant under isometric symmetries (distance invariance) associated with metric spaces. Gravitational Riemannian manifolds are metric spaces. For Minkowski Space, the distance invariant is [Formula: see text], where [Formula: see text], [Formula: see text] are arbitrary 4-vectors. Thus the isometry symmetry associated with Minkowski Space is the Poincaré Group. The Standard Model Lagrangian density [Formula: see text] is also invariant under the Poincaré Group, so for Minkowski Space, the scalar curvature and the Standard Model Lagrangian density are proportional to each other. We show that this proportionality extends to general gravitational Riemannian manifolds, not just for Minkowski Space. This predicts that Black Holes have non-zero scalar curvatures [Formula: see text]. For Schwarzschild Black Holes, [Formula: see text] is predicted to be [Formula: see text], where [Formula: see text] is the Schwarzschild radius. The existence of [Formula: see text] means that Black Holes cannot evaporate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
18
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信