香农采样展开截断误差的统一界

Peixin Ye
{"title":"香农采样展开截断误差的统一界","authors":"Peixin Ye","doi":"10.1109/ICIST.2011.5765317","DOIUrl":null,"url":null,"abstract":"Let B<sup>p</sup><inf>Ω</inf>, 1 ≤ p ≤ 8; be the set of all bounded functions from L<sup>p</sup>(ℝ) which can be extended to entire functions of exponential type ℝ. The uniform bounds for truncation error of Shannon sampling expansion from local averages are obtained for functions f ∈ B<sup>p</sup><inf>Ω</inf> with the decay condition equation where A and δ are positive constants. Furthermore we also establish similar results for non-bandlimit functions from Besov classes with the same decay condition as above.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"5 1","pages":"583-588"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uniform bounds of truncation error for shannon sampling expansion\",\"authors\":\"Peixin Ye\",\"doi\":\"10.1109/ICIST.2011.5765317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let B<sup>p</sup><inf>Ω</inf>, 1 ≤ p ≤ 8; be the set of all bounded functions from L<sup>p</sup>(ℝ) which can be extended to entire functions of exponential type ℝ. The uniform bounds for truncation error of Shannon sampling expansion from local averages are obtained for functions f ∈ B<sup>p</sup><inf>Ω</inf> with the decay condition equation where A and δ are positive constants. Furthermore we also establish similar results for non-bandlimit functions from Besov classes with the same decay condition as above.\",\"PeriodicalId\":6408,\"journal\":{\"name\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"volume\":\"5 1\",\"pages\":\"583-588\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2011.5765317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设BpΩ, 1≤p≤8;是Lp(l)中所有有界函数的集合,这些有界函数可以扩展为指数型的整个函数。对于函数f∈BpΩ,在A和δ为正常数的衰减条件方程下,得到了Shannon抽样展开局部平均截断误差的统一界。此外,我们还对具有相同衰减条件的Besov类非带限函数建立了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform bounds of truncation error for shannon sampling expansion
Let BpΩ, 1 ≤ p ≤ 8; be the set of all bounded functions from Lp(ℝ) which can be extended to entire functions of exponential type ℝ. The uniform bounds for truncation error of Shannon sampling expansion from local averages are obtained for functions f ∈ BpΩ with the decay condition equation where A and δ are positive constants. Furthermore we also establish similar results for non-bandlimit functions from Besov classes with the same decay condition as above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信