应用流行病学危险因素对病例和对照组胃癌分类的Logistic回归分析

B. Senthil Kumar, Harvey Vanlalpeka, J. Zohmingthanga, N. S. Kumar, L. Hmingliana, Lalrempuia Sailo
{"title":"应用流行病学危险因素对病例和对照组胃癌分类的Logistic回归分析","authors":"B. Senthil Kumar, Harvey Vanlalpeka, J. Zohmingthanga, N. S. Kumar, L. Hmingliana, Lalrempuia Sailo","doi":"10.22232/stj.2021.09.02.19","DOIUrl":null,"url":null,"abstract":"The main purpose of this study is to design a machine learning classifier that can accurately classify between gastric cancer (cases) patient and healthy individuals (controls) from epidemiological and environmental factors. The dataset contains missing values which are replaced by median using imputation technique. The basic idea of this work is to reduce the cost function by applying gradient descent to detect the optimal global minima. The proposed logistic regression has utilized 29 features as the input and produces an accuracy of 98.51%. This accuracy is achieved with learning rate 0.000915 and number of iterations 150000, which are devised for training the logistic regression model.","PeriodicalId":22107,"journal":{"name":"Silpakorn University Science and Technology Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logistic Regression for Gastric Cancer Classification using epidemiological risk factors in Cases and Controls\",\"authors\":\"B. Senthil Kumar, Harvey Vanlalpeka, J. Zohmingthanga, N. S. Kumar, L. Hmingliana, Lalrempuia Sailo\",\"doi\":\"10.22232/stj.2021.09.02.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this study is to design a machine learning classifier that can accurately classify between gastric cancer (cases) patient and healthy individuals (controls) from epidemiological and environmental factors. The dataset contains missing values which are replaced by median using imputation technique. The basic idea of this work is to reduce the cost function by applying gradient descent to detect the optimal global minima. The proposed logistic regression has utilized 29 features as the input and produces an accuracy of 98.51%. This accuracy is achieved with learning rate 0.000915 and number of iterations 150000, which are devised for training the logistic regression model.\",\"PeriodicalId\":22107,\"journal\":{\"name\":\"Silpakorn University Science and Technology Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silpakorn University Science and Technology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22232/stj.2021.09.02.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silpakorn University Science and Technology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22232/stj.2021.09.02.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是设计一个能够从流行病学和环境因素对胃癌患者(病例)和健康个体(对照)进行准确分类的机器学习分类器。数据集包含缺失值,使用插值技术将缺失值替换为中位数。这项工作的基本思想是通过应用梯度下降来降低成本函数,以检测最优的全局最小值。提出的逻辑回归利用29个特征作为输入,产生98.51%的准确率。该精度是在学习率0.000915和迭代次数150000的情况下实现的,这是为训练逻辑回归模型而设计的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logistic Regression for Gastric Cancer Classification using epidemiological risk factors in Cases and Controls
The main purpose of this study is to design a machine learning classifier that can accurately classify between gastric cancer (cases) patient and healthy individuals (controls) from epidemiological and environmental factors. The dataset contains missing values which are replaced by median using imputation technique. The basic idea of this work is to reduce the cost function by applying gradient descent to detect the optimal global minima. The proposed logistic regression has utilized 29 features as the input and produces an accuracy of 98.51%. This accuracy is achieved with learning rate 0.000915 and number of iterations 150000, which are devised for training the logistic regression model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信