p3阶Heisenberg群的整数群行列式

IF 0.8 3区 数学 Q2 MATHEMATICS
Michael J. Mossinghoff, Christopher G. Pinner
{"title":"p3阶Heisenberg群的整数群行列式","authors":"Michael J. Mossinghoff, Christopher G. Pinner","doi":"10.1307/mmj/20216124","DOIUrl":null,"url":null,"abstract":"We establish a congruence satisfied by the integer group determinants for the non-abelian Heisenberg group of order $p^3$. We characterize all determinant values coprime to $p$, give sharp divisibility conditions for multiples of $p$, and determine all values when $p=3$. We also provide new sharp conditions on the power of $p$ dividing the group determinants for $\\mathbb Z_p^2$. For a finite group, the integer group determinants can be understood as corresponding to Lind's generalization of the Mahler measure. We speculate on the Lind-Mahler measure for the discrete Heisenberg group and for two other infinite non-abelian groups arising from symmetries of the plane and 3-space.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Integer Group Determinants for the Heisenberg Group of Order p3\",\"authors\":\"Michael J. Mossinghoff, Christopher G. Pinner\",\"doi\":\"10.1307/mmj/20216124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a congruence satisfied by the integer group determinants for the non-abelian Heisenberg group of order $p^3$. We characterize all determinant values coprime to $p$, give sharp divisibility conditions for multiples of $p$, and determine all values when $p=3$. We also provide new sharp conditions on the power of $p$ dividing the group determinants for $\\\\mathbb Z_p^2$. For a finite group, the integer group determinants can be understood as corresponding to Lind's generalization of the Mahler measure. We speculate on the Lind-Mahler measure for the discrete Heisenberg group and for two other infinite non-abelian groups arising from symmetries of the plane and 3-space.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216124\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216124","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们建立了p^3阶非阿贝尔海森堡群的整数群行列式所满足的同余。我们描述了所有的行列式值与$p$的素数,给出了$p$的倍数的可整除性条件,并确定了$p=3$时的所有值。我们还提供了$p$除$ mathbb Z_p^2$群行列式幂的新的尖锐条件。对于有限群,整数群行列式可以理解为对应于林德对马勒测度的推广。我们推测了离散海森堡群和另外两个由平面和三维空间对称产生的无限非阿贝尔群的Lind-Mahler测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Integer Group Determinants for the Heisenberg Group of Order p3
We establish a congruence satisfied by the integer group determinants for the non-abelian Heisenberg group of order $p^3$. We characterize all determinant values coprime to $p$, give sharp divisibility conditions for multiples of $p$, and determine all values when $p=3$. We also provide new sharp conditions on the power of $p$ dividing the group determinants for $\mathbb Z_p^2$. For a finite group, the integer group determinants can be understood as corresponding to Lind's generalization of the Mahler measure. We speculate on the Lind-Mahler measure for the discrete Heisenberg group and for two other infinite non-abelian groups arising from symmetries of the plane and 3-space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信