环面作用,极大性和非负曲率

IF 1.2 1区 数学 Q1 MATHEMATICS
C. Escher, C. Searle
{"title":"环面作用,极大性和非负曲率","authors":"C. Escher, C. Searle","doi":"10.1515/crelle-2021-0035","DOIUrl":null,"url":null,"abstract":"Abstract Let ℳ0n{\\mathcal{M}_{0}^{n}} be the class of closed, simply connected, non-negatively curved Riemannian n-manifolds admitting an isometric, effective, isotropy-maximal torus action. We prove that if M∈ℳ0n{M\\in\\mathcal{M}_{0}^{n}}, then M is equivariantly diffeomorphic to the free, linear quotient by a torus of a product of spheres of dimensions greater than or equal to 3. As a special case, we then prove the Maximal Symmetry Rank Conjecture for all M∈ℳ0n{M\\in\\mathcal{M}_{0}^{n}}. Finally, we show the Maximal Symmetry Rank Conjecture for simply connected, non-negatively curved manifolds holds for dimensions less than or equal to 9 without additional assumptions on the torus action.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"183 1","pages":"221 - 264"},"PeriodicalIF":1.2000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Torus actions, maximality, and non-negative curvature\",\"authors\":\"C. Escher, C. Searle\",\"doi\":\"10.1515/crelle-2021-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let ℳ0n{\\\\mathcal{M}_{0}^{n}} be the class of closed, simply connected, non-negatively curved Riemannian n-manifolds admitting an isometric, effective, isotropy-maximal torus action. We prove that if M∈ℳ0n{M\\\\in\\\\mathcal{M}_{0}^{n}}, then M is equivariantly diffeomorphic to the free, linear quotient by a torus of a product of spheres of dimensions greater than or equal to 3. As a special case, we then prove the Maximal Symmetry Rank Conjecture for all M∈ℳ0n{M\\\\in\\\\mathcal{M}_{0}^{n}}. Finally, we show the Maximal Symmetry Rank Conjecture for simply connected, non-negatively curved manifolds holds for dimensions less than or equal to 9 without additional assumptions on the torus action.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"183 1\",\"pages\":\"221 - 264\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2021-0035\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2021-0035","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要:设a_0n {\mathcal{M}_{0}^{n}}是一类具有等距、有效、各向同性极大环面作用的闭、单连通、非负弯曲黎曼n流形。我们证明了如果M∈0n{M\in\mathcal{M}_{0}^{n}},则M是由一个大于或等于3维的球体积的环面等价微分同构于自由的线性商。作为一种特殊情况,我们证明了所有M∈0n{M\in\mathcal{M}_{0}^{n}}的极大对称秩猜想。最后,我们证明了单连通非负弯曲流形在维数小于或等于9时的极大对称秩猜想,而无需对环面作用作额外的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torus actions, maximality, and non-negative curvature
Abstract Let ℳ0n{\mathcal{M}_{0}^{n}} be the class of closed, simply connected, non-negatively curved Riemannian n-manifolds admitting an isometric, effective, isotropy-maximal torus action. We prove that if M∈ℳ0n{M\in\mathcal{M}_{0}^{n}}, then M is equivariantly diffeomorphic to the free, linear quotient by a torus of a product of spheres of dimensions greater than or equal to 3. As a special case, we then prove the Maximal Symmetry Rank Conjecture for all M∈ℳ0n{M\in\mathcal{M}_{0}^{n}}. Finally, we show the Maximal Symmetry Rank Conjecture for simply connected, non-negatively curved manifolds holds for dimensions less than or equal to 9 without additional assumptions on the torus action.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信