视频索引与检索的深度学习方法

X. Men, F. Zhou, Xiaoyong Li
{"title":"视频索引与检索的深度学习方法","authors":"X. Men, F. Zhou, Xiaoyong Li","doi":"10.2312/PG.20181287","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a deep neural network based method for content based video retrieval. Our approach leveraged the deep neural network to generate the semantic information and introduced the graph-based storage structure to establish the video indices. We devised the Inception-Single Shot Multibox Detector (ISSD) and RI3D model to extract spatial semantic information (objects) and extract temporal semantic information (actions). Our ISSD model achieved a mAP of 26.7% on MS COCO dataset, increasing 3.2% over the original SSD model, while the RI3D model achieved a top-1 accuracy of 97.7% on dataset UCF-101. And we also introduced the graph structure to build the video index with the temporal and spatial semantic information. Our experiment results showed that the deep learned semantic information is highly effective for video indexing and retrieval.","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"44 1","pages":"85-88"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learned Method for Video Indexing and Retrieval\",\"authors\":\"X. Men, F. Zhou, Xiaoyong Li\",\"doi\":\"10.2312/PG.20181287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed a deep neural network based method for content based video retrieval. Our approach leveraged the deep neural network to generate the semantic information and introduced the graph-based storage structure to establish the video indices. We devised the Inception-Single Shot Multibox Detector (ISSD) and RI3D model to extract spatial semantic information (objects) and extract temporal semantic information (actions). Our ISSD model achieved a mAP of 26.7% on MS COCO dataset, increasing 3.2% over the original SSD model, while the RI3D model achieved a top-1 accuracy of 97.7% on dataset UCF-101. And we also introduced the graph structure to build the video index with the temporal and spatial semantic information. Our experiment results showed that the deep learned semantic information is highly effective for video indexing and retrieval.\",\"PeriodicalId\":88304,\"journal\":{\"name\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"volume\":\"44 1\",\"pages\":\"85-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/PG.20181287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PG.20181287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出一种基于深度神经网络的基于内容的视频检索方法。该方法利用深度神经网络生成语义信息,并引入基于图的存储结构来建立视频索引。我们设计了Inception-Single Shot Multibox Detector (ISSD)和RI3D模型来提取空间语义信息(对象)和时间语义信息(动作)。我们的ISSD模型在MS COCO数据集上实现了26.7%的mAP,比原始SSD模型提高了3.2%,而RI3D模型在数据集UCF-101上实现了97.7%的前1精度。同时,我们还引入了图结构,利用时间和空间的语义信息来构建视频索引。实验结果表明,深度学习的语义信息对视频索引和检索是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learned Method for Video Indexing and Retrieval
In this paper, we proposed a deep neural network based method for content based video retrieval. Our approach leveraged the deep neural network to generate the semantic information and introduced the graph-based storage structure to establish the video indices. We devised the Inception-Single Shot Multibox Detector (ISSD) and RI3D model to extract spatial semantic information (objects) and extract temporal semantic information (actions). Our ISSD model achieved a mAP of 26.7% on MS COCO dataset, increasing 3.2% over the original SSD model, while the RI3D model achieved a top-1 accuracy of 97.7% on dataset UCF-101. And we also introduced the graph structure to build the video index with the temporal and spatial semantic information. Our experiment results showed that the deep learned semantic information is highly effective for video indexing and retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信