幂亲切图的一些刻画和np -完全问题

IF 0.7 Q2 MATHEMATICS
C. M. Barasara, Y. B. Thakkar
{"title":"幂亲切图的一些刻画和np -完全问题","authors":"C. M. Barasara, Y. B. Thakkar","doi":"10.1155/2023/2257492","DOIUrl":null,"url":null,"abstract":"<jats:p>A power cordial labeling of a graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>G</mi>\n <mo>=</mo>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>V</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>,</mo>\n <mi>E</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is a bijection <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>f</mi>\n <mo>:</mo>\n <mi>V</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n <mo>⟶</mo>\n <mfenced open=\"{\" close=\"}\" separators=\"|\">\n <mrow>\n <mn>1,2</mn>\n <mo>,</mo>\n <mo>…</mo>\n <mo>,</mo>\n <mrow>\n <mfenced open=\"|\" close=\"|\" separators=\"|\">\n <mrow>\n <mi>V</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> such that an edge <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>e</mi>\n <mo>=</mo>\n <mi>u</mi>\n <mi>v</mi>\n </math>\n </jats:inline-formula> is assigned the label 1 if <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>u</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>f</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>v</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> or <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>v</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>f</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>u</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>, for some <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>n</mi>\n <mo>∈</mo>\n <mi mathvariant=\"double-struck\">N</mi>\n <mo>∪</mo>\n <mfenced open=\"{\" close=\"}\" separators=\"|\">\n <mrow>\n <mn>0</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> and the label 0 otherwise, and satisfy the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. The graph that admits power cordial labeling is called a power cordial graph. In this paper, we derive some characterizations of power cordial graphs as well as explore NP-complete problems for power cordial labeling. This work also rules out any possibility of forbidden subgraph characterization for power cordial labeling.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Characterizations and NP-Complete Problems for Power Cordial Graphs\",\"authors\":\"C. M. Barasara, Y. B. Thakkar\",\"doi\":\"10.1155/2023/2257492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>A power cordial labeling of a graph <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mi>G</mi>\\n <mo>=</mo>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>V</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mo>,</mo>\\n <mi>E</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is a bijection <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>f</mi>\\n <mo>:</mo>\\n <mi>V</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mfenced>\\n <mo>⟶</mo>\\n <mfenced open=\\\"{\\\" close=\\\"}\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>1,2</mn>\\n <mo>,</mo>\\n <mo>…</mo>\\n <mo>,</mo>\\n <mrow>\\n <mfenced open=\\\"|\\\" close=\\\"|\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>V</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> such that an edge <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>e</mi>\\n <mo>=</mo>\\n <mi>u</mi>\\n <mi>v</mi>\\n </math>\\n </jats:inline-formula> is assigned the label 1 if <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>f</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>u</mi>\\n </mrow>\\n </mfenced>\\n <mo>=</mo>\\n <msup>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> or <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>f</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mfenced>\\n <mo>=</mo>\\n <msup>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>u</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula>, for some <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>n</mi>\\n <mo>∈</mo>\\n <mi mathvariant=\\\"double-struck\\\">N</mi>\\n <mo>∪</mo>\\n <mfenced open=\\\"{\\\" close=\\\"}\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> and the label 0 otherwise, and satisfy the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. The graph that admits power cordial labeling is called a power cordial graph. In this paper, we derive some characterizations of power cordial graphs as well as explore NP-complete problems for power cordial labeling. This work also rules out any possibility of forbidden subgraph characterization for power cordial labeling.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2257492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2257492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图G = vg的幂正则标记,eg是对射f:1,2,…,V G使得边e = u v被赋标签为1,如果f u= f vN或f v =F - n,对于某个n∈n∪0,否则标记为0,并且满足标记为0的边的个数和标记为1的边的个数相差不超过1。允许幂诚恳标记的图称为幂诚恳图。本文给出了幂诚恳图的一些刻画,并探讨了幂诚恳标记的np完全问题。这项工作也排除了电力亲切标记的禁止子图表征的任何可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Characterizations and NP-Complete Problems for Power Cordial Graphs
A power cordial labeling of a graph G = V G , E G is a bijection f : V G 1,2 , , V G such that an edge e = u v is assigned the label 1 if f u = f v n or f v = f u n , for some n N 0 and the label 0 otherwise, and satisfy the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. The graph that admits power cordial labeling is called a power cordial graph. In this paper, we derive some characterizations of power cordial graphs as well as explore NP-complete problems for power cordial labeling. This work also rules out any possibility of forbidden subgraph characterization for power cordial labeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信