极大实代数超曲面的指数稀疏

IF 2.5 1区 数学 Q1 MATHEMATICS
Michele Ancona
{"title":"极大实代数超曲面的指数稀疏","authors":"Michele Ancona","doi":"10.4171/jems/1311","DOIUrl":null,"url":null,"abstract":"Given an ample real Hermitian holomorphic line bundle $L$ over a real algebraic variety $X$, the space of real holomorphic sections of $L^{\\otimes d}$ inherits a natural Gaussian probability measure. We prove that the probability that the zero locus of a real holomorphic section $s$ of $L^{\\otimes d}$ defines a maximal hypersurface tends to $0$ exponentially fast as $d$ goes to infinity. This extends to any dimension a result of Gayet and Welschinger valid for maximal real algebraic curves inside a real algebraic surface. \nThe starting point is a low degree approximation property which relates the topology of the real vanishing locus of a real holomorphic section of $L^{\\otimes d}$ with the topology of the real vanishing locus a real holomorphic section of $L^{\\otimes d'}$ for a sufficiently smaller $d'","PeriodicalId":50003,"journal":{"name":"Journal of the European Mathematical Society","volume":"40 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Exponential rarefaction of maximal real algebraic hypersurfaces\",\"authors\":\"Michele Ancona\",\"doi\":\"10.4171/jems/1311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an ample real Hermitian holomorphic line bundle $L$ over a real algebraic variety $X$, the space of real holomorphic sections of $L^{\\\\otimes d}$ inherits a natural Gaussian probability measure. We prove that the probability that the zero locus of a real holomorphic section $s$ of $L^{\\\\otimes d}$ defines a maximal hypersurface tends to $0$ exponentially fast as $d$ goes to infinity. This extends to any dimension a result of Gayet and Welschinger valid for maximal real algebraic curves inside a real algebraic surface. \\nThe starting point is a low degree approximation property which relates the topology of the real vanishing locus of a real holomorphic section of $L^{\\\\otimes d}$ with the topology of the real vanishing locus a real holomorphic section of $L^{\\\\otimes d'}$ for a sufficiently smaller $d'\",\"PeriodicalId\":50003,\"journal\":{\"name\":\"Journal of the European Mathematical Society\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2020-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jems/1311\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1311","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

给定实代数变量X$上的实厄密全纯线束L$,则L^{\o * d}$的实全纯截面空间继承了自然高斯概率测度。证明了L^{\o * d}$的实全纯截面$s$的零轨迹在$d$趋于无穷时以指数速度趋于$0$的概率。这将Gayet和Welschinger对实代数曲面内的极大实代数曲线有效的结果推广到任何维度。起点是一个低次逼近性质,它将$L^{\o乘以d}$的实全纯截面的实消失轨迹的拓扑结构与$L^{\o乘以d'}$的实全纯截面的实消失轨迹的拓扑结构联系起来对于足够小的$d'
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential rarefaction of maximal real algebraic hypersurfaces
Given an ample real Hermitian holomorphic line bundle $L$ over a real algebraic variety $X$, the space of real holomorphic sections of $L^{\otimes d}$ inherits a natural Gaussian probability measure. We prove that the probability that the zero locus of a real holomorphic section $s$ of $L^{\otimes d}$ defines a maximal hypersurface tends to $0$ exponentially fast as $d$ goes to infinity. This extends to any dimension a result of Gayet and Welschinger valid for maximal real algebraic curves inside a real algebraic surface. The starting point is a low degree approximation property which relates the topology of the real vanishing locus of a real holomorphic section of $L^{\otimes d}$ with the topology of the real vanishing locus a real holomorphic section of $L^{\otimes d'}$ for a sufficiently smaller $d'
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
103
审稿时长
6-12 weeks
期刊介绍: The Journal of the European Mathematical Society (JEMS) is the official journal of the EMS. The Society, founded in 1990, works at promoting joint scientific efforts between the many different structures that characterize European mathematics. JEMS will publish research articles in all active areas of pure and applied mathematics. These will be selected by a distinguished, international board of editors for their outstanding quality and interest, according to the highest international standards. Occasionally, substantial survey papers on topics of exceptional interest will also be published. Starting in 1999, the Journal was published by Springer-Verlag until the end of 2003. Since 2004 it is published by the EMS Publishing House. The first Editor-in-Chief of the Journal was J. Jost, succeeded by H. Brezis in 2004. The Journal of the European Mathematical Society is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信