{"title":"用二次规划估计音乐结构分析中的特征相关性","authors":"Jordan B. L. Smith, E. Chew","doi":"10.1145/2502081.2502124","DOIUrl":null,"url":null,"abstract":"To identify repeated patterns and contrasting sections in music, it is common to use self-similarity matrices (SSMs) to visualize and estimate structure. We introduce a novel application for SSMs derived from audio recordings: using them to learn about the potential reasoning behind a listener's annotation. We use SSMs generated by musically-motivated audio features at various timescales to represent contributions to a structural annotation. Since a listener's attention can shift among musical features (e.g., rhythm, timbre, and harmony) throughout a piece, we further break down the SSMs into section-wise components and use quadratic programming (QP) to minimize the distance between a linear sum of these components and the annotated description. We posit that the optimal section-wise weights on the feature components may indicate the features to which a listener attended when annotating a piece, and thus may help us to understand why two listeners disagreed about a piece's structure. We discuss some examples that substantiate the claim that feature relevance varies throughout a piece, using our method to investigate differences between listeners' interpretations, and lastly propose some variations on our method.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":"365 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Using quadratic programming to estimate feature relevance in structural analyses of music\",\"authors\":\"Jordan B. L. Smith, E. Chew\",\"doi\":\"10.1145/2502081.2502124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To identify repeated patterns and contrasting sections in music, it is common to use self-similarity matrices (SSMs) to visualize and estimate structure. We introduce a novel application for SSMs derived from audio recordings: using them to learn about the potential reasoning behind a listener's annotation. We use SSMs generated by musically-motivated audio features at various timescales to represent contributions to a structural annotation. Since a listener's attention can shift among musical features (e.g., rhythm, timbre, and harmony) throughout a piece, we further break down the SSMs into section-wise components and use quadratic programming (QP) to minimize the distance between a linear sum of these components and the annotated description. We posit that the optimal section-wise weights on the feature components may indicate the features to which a listener attended when annotating a piece, and thus may help us to understand why two listeners disagreed about a piece's structure. We discuss some examples that substantiate the claim that feature relevance varies throughout a piece, using our method to investigate differences between listeners' interpretations, and lastly propose some variations on our method.\",\"PeriodicalId\":20448,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"volume\":\"365 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2502081.2502124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using quadratic programming to estimate feature relevance in structural analyses of music
To identify repeated patterns and contrasting sections in music, it is common to use self-similarity matrices (SSMs) to visualize and estimate structure. We introduce a novel application for SSMs derived from audio recordings: using them to learn about the potential reasoning behind a listener's annotation. We use SSMs generated by musically-motivated audio features at various timescales to represent contributions to a structural annotation. Since a listener's attention can shift among musical features (e.g., rhythm, timbre, and harmony) throughout a piece, we further break down the SSMs into section-wise components and use quadratic programming (QP) to minimize the distance between a linear sum of these components and the annotated description. We posit that the optimal section-wise weights on the feature components may indicate the features to which a listener attended when annotating a piece, and thus may help us to understand why two listeners disagreed about a piece's structure. We discuss some examples that substantiate the claim that feature relevance varies throughout a piece, using our method to investigate differences between listeners' interpretations, and lastly propose some variations on our method.