从装配指令中自动提取程序知识到受控自然语言的管道

Christine Rese, Nikolai West, Mathias Gebler, Sven Krzoska, P. Schlunder, J. Deuse
{"title":"从装配指令中自动提取程序知识到受控自然语言的管道","authors":"Christine Rese, Nikolai West, Mathias Gebler, Sven Krzoska, P. Schlunder, J. Deuse","doi":"10.17706/jsw.18.1.1-14","DOIUrl":null,"url":null,"abstract":"This paper presents the application of a Natural Language Processing (NLP) pipeline, which automatically extracts procedural knowledge in a standardized way from assembly instructions. The developed pipeline is able to parse and process written German assembly instructions regardless of the language discourse. The pipeline helps resolve ambiguities in assembly instructions by converting them into a Controlled Natural Language (CNL). The pipeline fully automates the translation process from free-text assembly instructions to CNL representations. We investigated and evaluated the efficiency and robustness of the NLP pipeline along multiple dimensions, such as different assembly process designers, language and fuzzy string matching models. To test the developed pipeline we used to automatically extract procedural knowledge in a standardized way for 2,740 assembly instructions obtained from automotive industry. Our investigation shows that the NLP pipeline is able to extract CNL representations with high accuracy (ø 87%). Downstream applications, such as assembly line balancing, can reuse the uniformly extracted procedural knowledge.","PeriodicalId":11452,"journal":{"name":"e Informatica Softw. Eng. J.","volume":"12 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pipeline for the Automatic Extraction of Procedural Knowledge from Assembly Instructions into Controlled Natural Language\",\"authors\":\"Christine Rese, Nikolai West, Mathias Gebler, Sven Krzoska, P. Schlunder, J. Deuse\",\"doi\":\"10.17706/jsw.18.1.1-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the application of a Natural Language Processing (NLP) pipeline, which automatically extracts procedural knowledge in a standardized way from assembly instructions. The developed pipeline is able to parse and process written German assembly instructions regardless of the language discourse. The pipeline helps resolve ambiguities in assembly instructions by converting them into a Controlled Natural Language (CNL). The pipeline fully automates the translation process from free-text assembly instructions to CNL representations. We investigated and evaluated the efficiency and robustness of the NLP pipeline along multiple dimensions, such as different assembly process designers, language and fuzzy string matching models. To test the developed pipeline we used to automatically extract procedural knowledge in a standardized way for 2,740 assembly instructions obtained from automotive industry. Our investigation shows that the NLP pipeline is able to extract CNL representations with high accuracy (ø 87%). Downstream applications, such as assembly line balancing, can reuse the uniformly extracted procedural knowledge.\",\"PeriodicalId\":11452,\"journal\":{\"name\":\"e Informatica Softw. Eng. J.\",\"volume\":\"12 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e Informatica Softw. Eng. J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17706/jsw.18.1.1-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e Informatica Softw. Eng. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17706/jsw.18.1.1-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了自然语言处理(NLP)流水线的应用,该流水线能够以标准化的方式从汇编指令中自动提取程序知识。开发的管道能够解析和处理书面的德语汇编指令,而不考虑语言论述。该管道通过将汇编指令转换为受控自然语言(CNL)来帮助解决汇编指令中的歧义。该管道完全自动化了从自由文本汇编指令到CNL表示的翻译过程。我们从多个维度(如不同的装配过程设计器、语言和模糊字符串匹配模型)研究和评估了NLP管道的效率和鲁棒性。为了对开发的流水线进行测试,我们对从汽车工业中获得的2740条装配指令进行了标准化的程序性知识自动提取。我们的研究表明,NLP管道能够以很高的准确率(ø 87%)提取CNL表示。下游应用程序,如装配线平衡,可以重用统一提取的过程知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pipeline for the Automatic Extraction of Procedural Knowledge from Assembly Instructions into Controlled Natural Language
This paper presents the application of a Natural Language Processing (NLP) pipeline, which automatically extracts procedural knowledge in a standardized way from assembly instructions. The developed pipeline is able to parse and process written German assembly instructions regardless of the language discourse. The pipeline helps resolve ambiguities in assembly instructions by converting them into a Controlled Natural Language (CNL). The pipeline fully automates the translation process from free-text assembly instructions to CNL representations. We investigated and evaluated the efficiency and robustness of the NLP pipeline along multiple dimensions, such as different assembly process designers, language and fuzzy string matching models. To test the developed pipeline we used to automatically extract procedural knowledge in a standardized way for 2,740 assembly instructions obtained from automotive industry. Our investigation shows that the NLP pipeline is able to extract CNL representations with high accuracy (ø 87%). Downstream applications, such as assembly line balancing, can reuse the uniformly extracted procedural knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信