{"title":"具有不同误差源的有限总体线性模型的最佳线性无偏潜在值预测","authors":"Germán Moreno, J. Singer, Edward J. Stanek III","doi":"10.28951/rbb.v39i4.553","DOIUrl":null,"url":null,"abstract":"We develop best linear unbiased predictors (BLUP) of the latent values of labeled sample units selected from a finite population when there are two distinct sources of measurement error: endogenous, exogenous or both. Usual target parameters are the population mean, the latent values associated to a labeled unit or the latent value of the unit that will appear in a given position in the sample. We show how both types of measurement errors affect the within unit covariance matrices and indicate how the finite population BLUP may be obtained via standard software packages employed to fit mixed models in situations with either heteroskedastic or homoskedastic exogenous and endogenous measurement errors.","PeriodicalId":36293,"journal":{"name":"Revista Brasileira de Biometria","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BEST LINEAR UNBIASED LATENT VALUES PREDICTORS FOR FINITE POPULATION LINEAR MODELS WITH DIFFERENT ERROR SOURCES\",\"authors\":\"Germán Moreno, J. Singer, Edward J. Stanek III\",\"doi\":\"10.28951/rbb.v39i4.553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop best linear unbiased predictors (BLUP) of the latent values of labeled sample units selected from a finite population when there are two distinct sources of measurement error: endogenous, exogenous or both. Usual target parameters are the population mean, the latent values associated to a labeled unit or the latent value of the unit that will appear in a given position in the sample. We show how both types of measurement errors affect the within unit covariance matrices and indicate how the finite population BLUP may be obtained via standard software packages employed to fit mixed models in situations with either heteroskedastic or homoskedastic exogenous and endogenous measurement errors.\",\"PeriodicalId\":36293,\"journal\":{\"name\":\"Revista Brasileira de Biometria\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Biometria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28951/rbb.v39i4.553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Biometria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28951/rbb.v39i4.553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
BEST LINEAR UNBIASED LATENT VALUES PREDICTORS FOR FINITE POPULATION LINEAR MODELS WITH DIFFERENT ERROR SOURCES
We develop best linear unbiased predictors (BLUP) of the latent values of labeled sample units selected from a finite population when there are two distinct sources of measurement error: endogenous, exogenous or both. Usual target parameters are the population mean, the latent values associated to a labeled unit or the latent value of the unit that will appear in a given position in the sample. We show how both types of measurement errors affect the within unit covariance matrices and indicate how the finite population BLUP may be obtained via standard software packages employed to fit mixed models in situations with either heteroskedastic or homoskedastic exogenous and endogenous measurement errors.