{"title":"高熵(Fe-Ni-Cx (X=0.3-0.5), (Fe-Cr-Cx (X=0.3-0.5))三元合金体系的热力学评价","authors":"W. U. Shah, D. Khan, Haiqing Yin, S. Jan","doi":"10.48129/kjs.18613","DOIUrl":null,"url":null,"abstract":"The thermodynamical assessment of high entropy alloys (Fe-Ni-Cx (X=0.3-0.5)), (Fe-Cr-Cx (X=0.3-0.5)) system is performed in this research work through FEDAMO database and Thermo-Calc software package. The high energy thermal analysis is manipulated for yield strength from FCC to BCC, precipitation from cementite to M7C3 (grain boundaries), Crack Susceptibility Coefficient for Fe-Ni-Cx ,Fe-Cr-Cx ternary alloys system at (1900-3000)K temperature with constant atmospheric pressure of 106 Pascal. The highest crack susceptibility coefficient for Fe-Cr-C, Fe-Ni-C system is found 2.21043, 0.26294 with mass percent of C 0.2500%, at 3000K of temperature with Mass percent. Yield strength from FCC to BCC is found 824.0453, 100.67063 for Fe-Cr-C, Fe-Ni-C ternary alloys. Phase transition is noted from cementite to M7C3 at 1346.77339 K. FCC_A1#3 phases with 0.98772 moles and 0.01228 mole Of M7C3 with 0 moles of M23C6 carbide phases observed. The comprehensive line investigation of mechanical properties is justified with simulation/computational inputs. The results are feasible for industrial sectors and metallurgical centers for operation. The alloy shows equilibrium and good stability.","PeriodicalId":49933,"journal":{"name":"Kuwait Journal of Science & Engineering","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THERMO-MECHANICAL ASSESSMENT OF HIGH ENTROPHY (Fe-Ni-Cx (X=0.3-0.5), (Fe-Cr-Cx (X=0.3-0.5) TERNARY ALLOYS SYSTEM USING CALPHAD METHOD\",\"authors\":\"W. U. Shah, D. Khan, Haiqing Yin, S. Jan\",\"doi\":\"10.48129/kjs.18613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermodynamical assessment of high entropy alloys (Fe-Ni-Cx (X=0.3-0.5)), (Fe-Cr-Cx (X=0.3-0.5)) system is performed in this research work through FEDAMO database and Thermo-Calc software package. The high energy thermal analysis is manipulated for yield strength from FCC to BCC, precipitation from cementite to M7C3 (grain boundaries), Crack Susceptibility Coefficient for Fe-Ni-Cx ,Fe-Cr-Cx ternary alloys system at (1900-3000)K temperature with constant atmospheric pressure of 106 Pascal. The highest crack susceptibility coefficient for Fe-Cr-C, Fe-Ni-C system is found 2.21043, 0.26294 with mass percent of C 0.2500%, at 3000K of temperature with Mass percent. Yield strength from FCC to BCC is found 824.0453, 100.67063 for Fe-Cr-C, Fe-Ni-C ternary alloys. Phase transition is noted from cementite to M7C3 at 1346.77339 K. FCC_A1#3 phases with 0.98772 moles and 0.01228 mole Of M7C3 with 0 moles of M23C6 carbide phases observed. The comprehensive line investigation of mechanical properties is justified with simulation/computational inputs. The results are feasible for industrial sectors and metallurgical centers for operation. The alloy shows equilibrium and good stability.\",\"PeriodicalId\":49933,\"journal\":{\"name\":\"Kuwait Journal of Science & Engineering\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48129/kjs.18613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48129/kjs.18613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THERMO-MECHANICAL ASSESSMENT OF HIGH ENTROPHY (Fe-Ni-Cx (X=0.3-0.5), (Fe-Cr-Cx (X=0.3-0.5) TERNARY ALLOYS SYSTEM USING CALPHAD METHOD
The thermodynamical assessment of high entropy alloys (Fe-Ni-Cx (X=0.3-0.5)), (Fe-Cr-Cx (X=0.3-0.5)) system is performed in this research work through FEDAMO database and Thermo-Calc software package. The high energy thermal analysis is manipulated for yield strength from FCC to BCC, precipitation from cementite to M7C3 (grain boundaries), Crack Susceptibility Coefficient for Fe-Ni-Cx ,Fe-Cr-Cx ternary alloys system at (1900-3000)K temperature with constant atmospheric pressure of 106 Pascal. The highest crack susceptibility coefficient for Fe-Cr-C, Fe-Ni-C system is found 2.21043, 0.26294 with mass percent of C 0.2500%, at 3000K of temperature with Mass percent. Yield strength from FCC to BCC is found 824.0453, 100.67063 for Fe-Cr-C, Fe-Ni-C ternary alloys. Phase transition is noted from cementite to M7C3 at 1346.77339 K. FCC_A1#3 phases with 0.98772 moles and 0.01228 mole Of M7C3 with 0 moles of M23C6 carbide phases observed. The comprehensive line investigation of mechanical properties is justified with simulation/computational inputs. The results are feasible for industrial sectors and metallurgical centers for operation. The alloy shows equilibrium and good stability.