无穷大时滞随机偏积分-微分脉冲方程解的存在唯一性

Q4 Mathematics
K. Ramkumar, A. G. Amoussou, C. Ogouyandjou, M. Diop
{"title":"无穷大时滞随机偏积分-微分脉冲方程解的存在唯一性","authors":"K. Ramkumar, A. G. Amoussou, C. Ogouyandjou, M. Diop","doi":"10.37622/adsa/14.1.2019.83-118","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the existence of mild solutions for a class of stochastic functional differential impulsive equations with infinite delay on Hilbert space. The results are obtained by using the Banach fixed point theorem and Krasnoselskii–Schaefer type fixed point theorem combined with theories of resolvent operators. In the end as an application, an example has been presented to illustrate the results obtained.","PeriodicalId":36469,"journal":{"name":"Advances in Dynamical Systems and Applications","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and Uniqueness of Mild Solutions of Stochastic Partial Integro-Differential Impulsive Equations with Infinite Delay via Resolvent Operator\",\"authors\":\"K. Ramkumar, A. G. Amoussou, C. Ogouyandjou, M. Diop\",\"doi\":\"10.37622/adsa/14.1.2019.83-118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the existence of mild solutions for a class of stochastic functional differential impulsive equations with infinite delay on Hilbert space. The results are obtained by using the Banach fixed point theorem and Krasnoselskii–Schaefer type fixed point theorem combined with theories of resolvent operators. In the end as an application, an example has been presented to illustrate the results obtained.\",\"PeriodicalId\":36469,\"journal\":{\"name\":\"Advances in Dynamical Systems and Applications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Dynamical Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37622/adsa/14.1.2019.83-118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Dynamical Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37622/adsa/14.1.2019.83-118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Hilbert空间上一类具有无限时滞的随机泛函微分脉冲方程温和解的存在性。利用Banach不动点定理和Krasnoselskii-Schaefer型不动点定理,结合可解算子理论,得到了上述结果。最后作为应用,给出了一个实例来说明所得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Uniqueness of Mild Solutions of Stochastic Partial Integro-Differential Impulsive Equations with Infinite Delay via Resolvent Operator
In this paper, we investigate the existence of mild solutions for a class of stochastic functional differential impulsive equations with infinite delay on Hilbert space. The results are obtained by using the Banach fixed point theorem and Krasnoselskii–Schaefer type fixed point theorem combined with theories of resolvent operators. In the end as an application, an example has been presented to illustrate the results obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信