{"title":"部分未知域线性和半线性热方程的不敏感控制","authors":"P. Lissy, Y. Privat, Y. Simporé","doi":"10.1051/COCV/2018035","DOIUrl":null,"url":null,"abstract":"We consider a semi-linear heat equation with Dirichlet boundary conditions and globally Lipschitz nonlinearity, posed on a bounded domain of ℝN (N ∈ ℕ*), assumed to be an unknown perturbation of a reference domain. We are interested in an insensitizing control problem, which consists in finding a distributed control such that some functional of the state is insensitive at the first order to the perturbations of the domain. Our first result consists of an approximate insensitization property on the semi-linear heat equation. It rests upon a linearization procedure together with the use of an appropriate fixed point theorem. For the linear case, an appropriate duality theory is developed, so that the problem can be seen as a consequence of well-known unique continuation theorems. Our second result is specific to the linear case. We show a property of exact insensitization for some families of deformation given by one or two parameters. Due to the nonlinearity of the intrinsic control problem, no duality theory is available, so that our proof relies on a geometrical approach and direct computations.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Insensitizing control for linear and semi-linear heat equations with partially unknown domain\",\"authors\":\"P. Lissy, Y. Privat, Y. Simporé\",\"doi\":\"10.1051/COCV/2018035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a semi-linear heat equation with Dirichlet boundary conditions and globally Lipschitz nonlinearity, posed on a bounded domain of ℝN (N ∈ ℕ*), assumed to be an unknown perturbation of a reference domain. We are interested in an insensitizing control problem, which consists in finding a distributed control such that some functional of the state is insensitive at the first order to the perturbations of the domain. Our first result consists of an approximate insensitization property on the semi-linear heat equation. It rests upon a linearization procedure together with the use of an appropriate fixed point theorem. For the linear case, an appropriate duality theory is developed, so that the problem can be seen as a consequence of well-known unique continuation theorems. Our second result is specific to the linear case. We show a property of exact insensitization for some families of deformation given by one or two parameters. Due to the nonlinearity of the intrinsic control problem, no duality theory is available, so that our proof relies on a geometrical approach and direct computations.\",\"PeriodicalId\":50500,\"journal\":{\"name\":\"Esaim-Control Optimisation and Calculus of Variations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Control Optimisation and Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/COCV/2018035\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/COCV/2018035","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Insensitizing control for linear and semi-linear heat equations with partially unknown domain
We consider a semi-linear heat equation with Dirichlet boundary conditions and globally Lipschitz nonlinearity, posed on a bounded domain of ℝN (N ∈ ℕ*), assumed to be an unknown perturbation of a reference domain. We are interested in an insensitizing control problem, which consists in finding a distributed control such that some functional of the state is insensitive at the first order to the perturbations of the domain. Our first result consists of an approximate insensitization property on the semi-linear heat equation. It rests upon a linearization procedure together with the use of an appropriate fixed point theorem. For the linear case, an appropriate duality theory is developed, so that the problem can be seen as a consequence of well-known unique continuation theorems. Our second result is specific to the linear case. We show a property of exact insensitization for some families of deformation given by one or two parameters. Due to the nonlinearity of the intrinsic control problem, no duality theory is available, so that our proof relies on a geometrical approach and direct computations.
期刊介绍:
ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations.
Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines.
Targeted topics include:
in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory;
in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis;
in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.