{"title":"一类变指数奇异椭圆问题","authors":"Francesca Farraci","doi":"10.24193/subbmath.2023.1.03","DOIUrl":null,"url":null,"abstract":"\"In the present note we study a semilinear elliptic Dirichlet problem involving a singular term with variable exponent of the following type $$\\left\\{ \\begin{array}{ll} -\\Delta u= \\frac{f(x)}{u^{\\gamma(x)} }, & \\hbox{ in } \\Omega \\\\ u>0, & \\hbox{ in } \\Omega \\\\ u=0, & \\hbox{on } \\partial \\Omega \\end{array} \\right.\\eqno{(\\mathcal{P})}$$ Existence and uniqueness results are proved when $f\\geq 0$.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"2005 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a singular elliptic problem with variable exponent\",\"authors\":\"Francesca Farraci\",\"doi\":\"10.24193/subbmath.2023.1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In the present note we study a semilinear elliptic Dirichlet problem involving a singular term with variable exponent of the following type $$\\\\left\\\\{ \\\\begin{array}{ll} -\\\\Delta u= \\\\frac{f(x)}{u^{\\\\gamma(x)} }, & \\\\hbox{ in } \\\\Omega \\\\\\\\ u>0, & \\\\hbox{ in } \\\\Omega \\\\\\\\ u=0, & \\\\hbox{on } \\\\partial \\\\Omega \\\\end{array} \\\\right.\\\\eqno{(\\\\mathcal{P})}$$ Existence and uniqueness results are proved when $f\\\\geq 0$.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"2005 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2023.1.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2023.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a singular elliptic problem with variable exponent
"In the present note we study a semilinear elliptic Dirichlet problem involving a singular term with variable exponent of the following type $$\left\{ \begin{array}{ll} -\Delta u= \frac{f(x)}{u^{\gamma(x)} }, & \hbox{ in } \Omega \\ u>0, & \hbox{ in } \Omega \\ u=0, & \hbox{on } \partial \Omega \end{array} \right.\eqno{(\mathcal{P})}$$ Existence and uniqueness results are proved when $f\geq 0$."