{"title":"求解非线性积分-微分方程初值问题的双面法","authors":"Y. Pelekh, A. Kunynets, R. Pelekh","doi":"10.17721/2706-9699.2022.2.13","DOIUrl":null,"url":null,"abstract":"Using the continued fractions and the method of constructing Runge-Kutta methods, numerical methods for solving the Cauchy problem for nonlinear Volterra non-linear integrodifferential equations are proposed. With appropriate values of the parameters, one can obtain an approximation to the exact solution of the first and second order of accuracy. We found a set of parameters for which we obtain two-sided calculation formulas, which at each step of integration allow to obtain the upper and lower approximations of the exact solution.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"7 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TWO-SIDED METHODS FOR SOLVING INITIAL VALUE PROBLEM FOR NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS\",\"authors\":\"Y. Pelekh, A. Kunynets, R. Pelekh\",\"doi\":\"10.17721/2706-9699.2022.2.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the continued fractions and the method of constructing Runge-Kutta methods, numerical methods for solving the Cauchy problem for nonlinear Volterra non-linear integrodifferential equations are proposed. With appropriate values of the parameters, one can obtain an approximation to the exact solution of the first and second order of accuracy. We found a set of parameters for which we obtain two-sided calculation formulas, which at each step of integration allow to obtain the upper and lower approximations of the exact solution.\",\"PeriodicalId\":40347,\"journal\":{\"name\":\"Journal of Numerical and Applied Mathematics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/2706-9699.2022.2.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2022.2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TWO-SIDED METHODS FOR SOLVING INITIAL VALUE PROBLEM FOR NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
Using the continued fractions and the method of constructing Runge-Kutta methods, numerical methods for solving the Cauchy problem for nonlinear Volterra non-linear integrodifferential equations are proposed. With appropriate values of the parameters, one can obtain an approximation to the exact solution of the first and second order of accuracy. We found a set of parameters for which we obtain two-sided calculation formulas, which at each step of integration allow to obtain the upper and lower approximations of the exact solution.