F. A. Alsulaiman, N. Sakr, J. J. Valdés, Abdulmotaleb El Saddik, N. Georganas
{"title":"遗传规划中的特征选择与分类:在基于触觉的生物特征数据中的应用","authors":"F. A. Alsulaiman, N. Sakr, J. J. Valdés, Abdulmotaleb El Saddik, N. Georganas","doi":"10.1109/CISDA.2009.5356540","DOIUrl":null,"url":null,"abstract":"In this paper, a study is conducted in order to explore the use of genetic programming, in particular gene expression programming (GEP), in finding analytic functions that can behave as classifiers in high-dimensional haptic feature spaces. More importantly, the determined explicit functions are used in discovering minimal knowledge-preserving subsets of features from very high dimensional haptic datasets, thus acting as general dimensionality reducers. This approach is applied to the haptic-based biometrics problem; namely, in user identity verification. GEP models are initially generated using the original haptic biometric datatset, which is imbalanced in terms of the number of representative instances of each class. This procedure was repeated while considering an under-sampled (balanced) version of the datasets. The results demonstrated that for all datasets, whether imbalanced or under-sampled, a certain number (on average) of perfect classification models were determined. In addition, using GEP, great feature reduction was achieved as the generated analytic functions (classifiers) exploited only a small fraction of the available features.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"34 12 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Feature selection and classification in genetic programming: Application to haptic-based biometric data\",\"authors\":\"F. A. Alsulaiman, N. Sakr, J. J. Valdés, Abdulmotaleb El Saddik, N. Georganas\",\"doi\":\"10.1109/CISDA.2009.5356540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a study is conducted in order to explore the use of genetic programming, in particular gene expression programming (GEP), in finding analytic functions that can behave as classifiers in high-dimensional haptic feature spaces. More importantly, the determined explicit functions are used in discovering minimal knowledge-preserving subsets of features from very high dimensional haptic datasets, thus acting as general dimensionality reducers. This approach is applied to the haptic-based biometrics problem; namely, in user identity verification. GEP models are initially generated using the original haptic biometric datatset, which is imbalanced in terms of the number of representative instances of each class. This procedure was repeated while considering an under-sampled (balanced) version of the datasets. The results demonstrated that for all datasets, whether imbalanced or under-sampled, a certain number (on average) of perfect classification models were determined. In addition, using GEP, great feature reduction was achieved as the generated analytic functions (classifiers) exploited only a small fraction of the available features.\",\"PeriodicalId\":6407,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"volume\":\"34 12 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISDA.2009.5356540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature selection and classification in genetic programming: Application to haptic-based biometric data
In this paper, a study is conducted in order to explore the use of genetic programming, in particular gene expression programming (GEP), in finding analytic functions that can behave as classifiers in high-dimensional haptic feature spaces. More importantly, the determined explicit functions are used in discovering minimal knowledge-preserving subsets of features from very high dimensional haptic datasets, thus acting as general dimensionality reducers. This approach is applied to the haptic-based biometrics problem; namely, in user identity verification. GEP models are initially generated using the original haptic biometric datatset, which is imbalanced in terms of the number of representative instances of each class. This procedure was repeated while considering an under-sampled (balanced) version of the datasets. The results demonstrated that for all datasets, whether imbalanced or under-sampled, a certain number (on average) of perfect classification models were determined. In addition, using GEP, great feature reduction was achieved as the generated analytic functions (classifiers) exploited only a small fraction of the available features.